Advertisement

Feedback control of milk secretion from milk

  • Malcolm Peaker
  • Colin J. Wilde
Article

Abstract

Extracellular storage allows biologically-active substances in milk to influence mammary function. Among these factors is one which regulates the rate of milk secretion acutely according to frequency or completeness of milk removal in each mammary gland. The active factor in goat's milk has been identified by screening milk constituents for their ability to inhibit milk constituent secretion in tissue and cell culture bioassays, and found to be a novel milk protein. The proteins identified by bioassayin vitro, also inhibited milk secretion in lactating goats in a reversible, concentration-dependent manner. This protein, termed FIL (feedback inhibitor of lactation), acts by reversible blockade of constitutive secretion in the mammary epithelial cell. As the inhibitor is synthesized in the same epithelial cells, feedback inhibition is, therefore, an autocrine mechanism. FIL's unusual mechanism of action also influences other aspects of mammary function. Acute disruption of mammary membrane trafficking is associated with downregulation of prolactin receptors and followed by a decrease in epithelial cell differentiation. Thus, in addition to acutely-regulating milk secretion, FIL may induce the adaptation in mammary cell differentiation which actsin vivo to sustain the secretory response to a sustained change in milk removal. In the long term, matching of milk output to demand is achieved by a change in mammary cell number. This developmental response is also local in nature. Whether it too is due to autocrine modulation by FIL of mechanisms influencing cell proliferation or survival, or elicited by another milk-borne factor, remains to be determined.

Key words

Feedback inhibition pulse-chase protocol autocrine mechanism milk secretion 

Abbreviations

FIL

Feedback inhibitor of lactation

EHS matrix

Engelbreth-Holm-Swarm matrix

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Peaker and M. C. Neville (1991). Commentary. Hormones in milk: chemical signals to the offspring?J. Endocrinol. 131:1–3.Google Scholar
  2. 2.
    C. E. Grosvenor, M. F. Picciano, and C. R. Baumrucker (1992). Hormones and growth factors in milk.Endocrine Rev. 14:710–728.Google Scholar
  3. 3.
    A. F. Phillips, R. K. Rao, D. M. McCracken, M. Lake, and O. Koldovský (1991). Presence of insulin-like growth factors and their binding proteins in rat milk. In M. K. Raizada and D. LeRoith (eds.),Molecular Biology and Physiology of Insulin and Insulin-like Growth Factors, Plenum Press, New York, pp. 179–186.Google Scholar
  4. 4.
    M. F. McGrath, R. J. Collier, D. R. Clemmons, W. H. Busby, C. A. Sweeney, and G. G. Krivi (1991). The directin vitro effect of insulin-like growth factors (IGFs) on normal bovine mammary cell proliferation and production of IGF binding proteins.Endocrinology 129:671–678.PubMedGoogle Scholar
  5. 5.
    P. J. Fielder, G. Thordarson, A. English, R. G. Rosenfield, and F. Talamantes (1992). Expression of a lactogen-dependent insulin-like growth factor-binding protein in cultured mouse mammary epithelial cells.Endocrinology 131:261–267.PubMedGoogle Scholar
  6. 6.
    P. Ervin, M. Kaminski, R. Cody, and M. Wicha (1989). Production of mammastatin, a tissue-specific growth inhibitor by normal human mammary epithelial cells.Science 244:1585–1587.PubMedGoogle Scholar
  7. 7.
    R. Grosse, F.-D. Bohmer, B. Binas, A. Kurtz, E. Spitzer, T. Muller, and W. Zschiesche (1992). Mammary derived growth inhibitor. In R. B. Dickson and M. Lippman (eds.),Cancer Treatment and Research: Genes, Oncogenes and Hormones. Springer Verlag, Heidelberg, pp. 69–94.Google Scholar
  8. 8.
    M. P. Thompson, H. M. Farrell, S. Mohanam, S. Liu, W. R. Kidwell, M. P. Bansal, R. G. Cook, D. Medina, C. E. Kotts, and M. Bano (1992). Identification of α-lactalbumin as a cell growth inhibitor.Protoplasma 167:134–144.Google Scholar
  9. 9.
    M. Peaker (1995). Autocrine control of milk secretion: development of the concept. In C. J. Wilde, M. Peaker, and C. H. Knight (eds.),Intercellular Signalling in the Mammary Gland, Plenum Press, New York, pp. 193–202.Google Scholar
  10. 10.
    C. J. Wilde, A. Daly, D. T. Calvert, and M. Peaker (1987). The effect of goat's milk fractions on synthesis of milk constituents by rabbit mammary explants and on milk yieldin vivo.Biochem. J. 242:285–288.PubMedGoogle Scholar
  11. 11.
    C. J. Wilde, C. V. P. Addey, L. M. Boddy, and M. Peaker (1995). Autocrine regulation of milk secretion by a protein in milk.Biochem. J. 305:51–58.PubMedGoogle Scholar
  12. 12.
    H. K. Kleinman, M. L. McGarvey, J. R. Hassall, V. L. Star, F. B. Cannon, G. W. Laurie, and G. R. Martin (1986). Basement membrane complexes with biological activity.Biochemistry 25:312–318.PubMedGoogle Scholar
  13. 13.
    M. H. Barcellos-Hoff, J. Aggeler, T. G. Ram, and M. J. Bissell (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane.Development 105:223–235.PubMedGoogle Scholar
  14. 14.
    M. C. Neville, L. Stahl, L. A. Brozo, and J. Lowe-Lieber (1991). Morphogenesis and secretory activity of mouse mammary cultures on EHS matrix.Protoplasma 163:1–8.Google Scholar
  15. 15.
    R. R. Dils and I. A. Forsyth (1981). Preparation and culture of mammary gland explants. In S. P. Colowick and N. O. Kaplan (eds.),Methods in Enzymology (Vol. 72), Academic Press, New York, pp. 724–742.Google Scholar
  16. 16.
    M. D. Turner, M. E. Rennison, S. E. Handel, C. J. Wilde, and R. D. Burgoyne (1992). Proteins are secreted by both constitutive and regulated secretory pathways in lactating mouse mammary epithelial cells.J. Cell Biol. 117:269–278.PubMedGoogle Scholar
  17. 17.
    M. E. Rennison, M. Kerr, C. V. P. Addey, S. E. Handel, M. D. Turner, C. J. Wilde, and R. D. Burgoyne (1993). Inhibition of constitutive protein secretion from lactating mouse mammary epithelial cells by FIL (Feedback inhibitor of lactation), a secreted milk protein.J. Cell Sci. 106:641–648.PubMedGoogle Scholar
  18. 18.
    M. Ollivier-Bousquet (1978). Early effects of prolactin on lactating rabbit mammary gland.Cell Tissue Res. 187:25–43.PubMedGoogle Scholar
  19. 19.
    H. Razooki Hasan, D. A. White, and R. J. Mayer (1982). Extensive destruction of newly-synthesised casein in mammary explants in organ culture.Biochem. J. 202:133–138.PubMedGoogle Scholar
  20. 20.
    C. J. Wilde and C. H. Knight (1986). Degradation of newly-synthesised casein in mammary explants from pregnant and lactating goats.Comp. Biochem. Physiol. 84B:197–201.Google Scholar
  21. 21.
    T. H. M. Da Costa, V. Illic, and D. H. Williamson (1995).In vitro effects of oxytocin and ionomycin on lipid secretion by rat mammary gland. Role of the myoepithelial cells. In C. J. Wilde, M. Peaker, and C. H. Knight (eds.),Intercellular Signalling in the Mammary Gland, Plenum Press, New York, pp. 265–266.Google Scholar
  22. 22.
    D. R. Blatchford, K. A. K. Hendry, M. D. Turner, R. D. Burgoyne, and C. J. Wilde (1995). Vectorial secretion by constitutive and regulated secretory pathways in mammary epithelial cells.Epith. Cell Biol. 4:8–16.Google Scholar
  23. 23.
    K.-I. Enomoto, K. Furuya, S. Yamagishi, and T. Maeno (1992). Mechanically-induced electrical and intracellular calcium responses in normal and cancerous mammary cells.Cell Calcium 13:501–511.PubMedGoogle Scholar
  24. 24.
    K. Furuya, K.-I. Enomoto, and S. Yamagishi (1993). Spontaneous calcium oscillations and mechanically and chemically-induced calcium responses in mammary epithelial cells.Pflügers Arch. 422:295–304.Google Scholar
  25. 25.
    K.-I. Enomoto, K. Furuya, S. Yamagishi, T. Oka, and T. Maeno (1994). The increase in intracellular Ca2+ concentration by mechanical stimulation is propagated via release of pyrophorylated nucleotides in mammary epithelial cells.Pflügers Arch. 427:533–542.Google Scholar
  26. 26.
    J. L. Linzell and M. Peaker (1971). The effects of oxytocin and milk removal on milk secretion in the goat.J. Physiol. London 216:717–734.PubMedGoogle Scholar
  27. 27.
    M. E. Rennison, S. E. Handel, C. J. Wilde, and R. D. Burgoyne (1992). Investigation of the role of microtubules in protein secretion from lactating mouse mammary epithelial cells.J. Cell Sci. 102:239–247.PubMedGoogle Scholar
  28. 28.
    R. D. Burgoyne and A. Morgan (1993). Regulated exocytosis.Biochem. J. 293:305–316.PubMedGoogle Scholar
  29. 29.
    S. E. Handel, M. E. Rennison, C. J. Wilde, and R. D. Burgoyne (1991). Annexin II (Calpactin I) in the mouse mammary gland: immunolocalisation by light and electron microscopy.Cell Tissue Res. 264:549–554.PubMedGoogle Scholar
  30. 30.
    T. W. Keenan, D. P. Dylewski, D. Ghosal, and B. H. Keon (1992). Milk lipid globule precursor release from endoplasmic reticulum reconstituted in a cell-free system.Eur. J. Biochem. 57:21–29.Google Scholar
  31. 31.
    B. H. Keon, D. Ghosal, and T. W. Keenan (1993). Association of cytosolic lipids with fatty acid synthase from lactating mammary gland.Int. J. Biochem. 25:533–543.PubMedGoogle Scholar
  32. 32.
    R. A. Hawkins and D. H. Williamson (1972). Measurements of substrate uptake by mammary gland of the rat.Biochem. J. 129:1171–1173.PubMedGoogle Scholar
  33. 33.
    K. J. Heesom, P. F. A Souza, V. Ilic, and D. H. Williamson (1992). Chain-length dependency of interactions of medium-chain fatty acids with glucose metabolism in acini isolated from lactating rat mammary glands. A putative feedback to control milk lipid synthesis.Biochem. J. 281:273–278.PubMedGoogle Scholar
  34. 34.
    D. H. Williamson, V. Ilic, and P. Lund (1995). A role for medium-chain fatty acids in the regulation of lipid synthesis in milk stasis? In C. J. Wilde, M. Peaker, and C. H. Knight (eds.),Intercellular Signalling in the Mammary Gland, Plenum Press, New York, pp. 239–251.Google Scholar
  35. 35.
    W. L. Hurley, D. R. Blatchford, K. A. K. Hendry, and C. J. Wilde (1994). Extracellular matrix and mouse mammary cell function: comparison of substrata in culture.In Vitro Cell Dev. Biol. 30A:529–538.Google Scholar
  36. 36.
    C. J. Wilde, C. V. P. Addey, and M. Peaker (1996). Active immunisation of lactating goats against an autocrine inhibitor of milk secretion.J. Physiol. 491:465–469.PubMedGoogle Scholar
  37. 37.
    J. B. Helms, A. Karrenbauer, K. W. A. Wirtz, J. E. Rothman, and F. T. Wieland (1990). Reconstitution of steps in the constitutive secretory pathway in permeabilised cells.J. Biol. Chem. 265:20027–20032.PubMedGoogle Scholar
  38. 38.
    S. G. Miller and H.-P. H. Moore (1991). Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium.J. Cell Biol. 261:11398–11403.Google Scholar
  39. 39.
    F. A. Barr, A. Leyte, S. Mollner, T. Pfeuffer, S. A. Tooze, and W. B. Huttner (1991). Trimeric G-proteins of the trans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules.FEBS Lett. 294:239–243.PubMedGoogle Scholar
  40. 40.
    J. G. Donaldson, R. A. Kahn, J. Lippincott-Schwartz, and R. D. Klausner (1991). Binding of ARF and β-COP to Golgi membranes: possible regulation by trimeric G protein.Science 254:1197–1199.PubMedGoogle Scholar
  41. 41.
    J. Lucocq, G. Warren, and J. Pryde (1991). Okadaic acid induces Golgi apparatus fragmentation and arrest of intracellular transport.J. Cell Sci. 100:753–759.PubMedGoogle Scholar
  42. 42.
    H. W. Davidson, C. H. McGowan, and W. E. Balch (1992). Evidence for the regulation of exocytotic transport by protein phosphorylation.J. Cell Biol. 116:1343–1355.PubMedGoogle Scholar
  43. 43.
    M. A. De Matteis, G. Santini, R. A. Kahn, G. Tullio, and A. Liuni (1993). Receptor and protein kinase-C-mediated regulation of ARF binding to the Golgi complex.Nature 364:818–821.PubMedGoogle Scholar
  44. 44.
    M. D. Turner, C. J. Wilde, and R. D. Burgoyne (1992). Exocytosis from permeabilised lactating mouse mammary epithelial cells.Biochem J. 286:13–15.PubMedGoogle Scholar
  45. 45.
    J. M. Bryson, C. J. Wilde, and C. V. P. Addey (1993). Effect of unilateral changes in milking frequency on mammary mRNA concentrations in the lactating goat.Biochem. Soc. Trans. 21:294S.Google Scholar
  46. 46.
    C. J. Wilde, C. H. Knight, C. V. P. Addey, D. R. Blatchford, M. Travers, C. N. Bennett, and M. Peaker (1990). Autocrine regulation of mammary cell differentiation.Protoplasma 159:112–117.Google Scholar
  47. 47.
    C. J. Wilde, A. J. Henderson, C. H. Knight, D. R. Blatchford, A. Faulkner, and M. Peaker (1987). Effect of thrice daily milking on mammary enzyme activity, cell population and milk yield in the goat.J Anim. Sci. 64:533–539.PubMedGoogle Scholar
  48. 48.
    J. Lippincott-Schwartz, L. Juan, J. S. Bonifacino, and R. D. Klausner (1989). Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER.Cell 56:801–813.PubMedGoogle Scholar
  49. 49.
    L. Orci, M. Tagaya, M. Amherdt, A. Perrelet, J. G. Donaldson, J. Lippincott-Schwartz, R. D. Klausner, and J. E. Rothman (1991). Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisterae.Cell 64:1183–1195.PubMedGoogle Scholar
  50. 50.
    C. N. Bennett, C. H. Knight, and C. J. Wilde (1991). Regulation of mammary prolactin binding by secreted milk proteins.J. Endocrinol. 13:117–125.Google Scholar
  51. 51.
    C. J. Wilde, D. T. Calvert, and M. Peaker (1988). Effect of a fraction of goat milk serum proteins on milk accumulation and enzyme activities in rabbit mammary gland.Biochem. Soc. Trans. 15:916–917.Google Scholar
  52. 52.
    C. J. Wilde, D. R. Blatchford, and M. Peaker (1991). Regulation of mouse mammary cell differentiation by extracellular milk proteins.Exp. Physiol. 76:379–387.PubMedGoogle Scholar
  53. 53.
    M. T. Travers and M. C. Barber (1993). Isolation of a goat acetyl-CoA carboxylase complementary DNA and effect of milking frequency on the expression of the acetyl-CoA carboxylase and fatty acid synthase genes in goat mammary gland.Comp. Biochem. Physiol. 105B:123–128.Google Scholar
  54. 54.
    F. Rösl (1992). A simple and rapid method for detection of apoptosis in human cells.Nucl. Acids Res. 20:5243–5244.PubMedGoogle Scholar
  55. 55.
    A. H. Wyllie, J. F. R. Kerr, and A. R. Currie (1980). Cell death: the significance of apoptosis.Int. Rev. Cytol. 68:251–306.PubMedGoogle Scholar
  56. 56.
    L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1995). Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling.Cell Tissue Res. 281:413–419.PubMedGoogle Scholar
  57. 57.
    N. I. Walker, R. E. Bennett, and J. F. R. Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats.Am. J. Anat. 185:19–32.PubMedGoogle Scholar
  58. 58.
    R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodelling during mouse mammary gland involution.Development 115:49–58.PubMedGoogle Scholar
  59. 59.
    L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1996). Programmed cell death during mammary tissue involution induced by weaning, litter removal and milk stasis.J. Cell. Physiol. (in press).Google Scholar
  60. 60.
    L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1995). Local control of mammary apoptosis by milk stasis. In C. J. Wilde, M. Peaker, and C. H. Knight (eds.),Intercellular Signalling in the Mammary Gland, Plenum Press, New York, pp. 95–96.Google Scholar
  61. 61.
    L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1994). Local regulation of mammary apoptosis in the lactating goat.Biochem. Soc. Trans. 22:178S.Google Scholar
  62. 62.
    L. G. Sheffield and L. C. Kotolski (1992). Prolactin inhibits programmed cell death during mammary gland involution.FASEB J. 6:A1184.Google Scholar
  63. 63.
    M. T. Travers, M. C. Barber, E. Tonner, L. H. Quarrie, C. J. Wilde, and D. J. Flint (1996). The role of prolactin and growth hormone in the regulation of casein gene expression and mammary cell survival: relationships to milk synthesis and secretion.Endocrinology (in press).Google Scholar
  64. 64.
    N. Boudreau, C. J. Simpson, Z. Werb, and M. J. Bissell (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix.Science 267:891–893.PubMedGoogle Scholar
  65. 65.
    R. S. Guenette and M. Tenniswood (1995). The role of insulin like growth factors binding proteins (IGFBPs) in regulating active cell death in regressing rat prostate and mammary gland.J. Cell. Biochem. (Suppl.)19B:280.Google Scholar
  66. 66.
    E. Tonner, J. Beattie, and D. J. Flint (1995). Production of an insulin-like growth factor binding protein by the involuting rat mammary gland. In C. J. Wilde, M. Peaker, and C. H. Knight (eds.),Intercellular Signalling in the Mammary Gland, Plenum Press, New York, pp. 103–104.Google Scholar
  67. 67.
    C. Sell, R. Baserga, and R. Rubin (1995). Insulin-like growth factor I (IGF-1) and the IGF-1 receptor prevent etoposide-induced apoptosis.Cancer Res. 55:303–306.PubMedGoogle Scholar
  68. 68.
    C. H. Knight and M. Peaker (1979). Adaptive hyperplasia and compensatory growth in the salt glands of ducks and geese.J. Physiol. (Lond.) 294:145–151.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Malcolm Peaker
    • 1
  • Colin J. Wilde
    • 1
  1. 1.Hannah Research InstituteAyrUnited Kingdom

Personalised recommendations