European Journal of Clinical Microbiology

, Volume 3, Issue 5, pp 471–474

Renal clearance of imipenem in children

  • R. F. Jacobs
  • G. L. Kearns
  • A. L. Brown
  • J. M. Trang
  • R. B. Kluza
Current Topic: Imipenem — A New Carbapenem Antibiotic

Abstract

Imipenem renal clearance was studied in six children (three males, three females; 2.9–11.2 years of age) following a single intravenous dose (21.7±5.1 mg/kg) of imipenem/cilastatin (1∶1). In an approximately six-hour period following drug administration, 65.3±9.7% of the imipenem dose was excreted in the urine unchanged. The renal clearance (280.03±24.34 ml/min/1.73 m2) of imipenem was found to account for 69.2% of the corresponding plasma imipenem clearance (404.89±24.83 ml/min/1.73 m2). Contrary to existing adult data, the imipenem renal clearance in our subjects was 1.95-fold greater than the estimated creatinine clearance, suggesting significant tubular secretion of imipenem in children. Examination of urinary imipenem excretion rate versus plasma concentration relationships in three of the children revealed a potential renal tubular reabsorption component for imipenem in children. Comparison of renal imipenem clearance data in these children to similar data from adults suggests that quantitatively important developmental differences may exist for the renal handling of imipenem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hanslo, D., King, A., Shannon, K., Warren, C., Phillips, I.: N-formimidoyl thienamycin (MK0787):in vitro antibacterial activity and susceptibility to beta-lactamases compared with that of cefotaxime, moxalactam, and other beta-lactam antibiotics. Journal of Antimicrobial Chemotherapy 1981, 7: 607–617.PubMedGoogle Scholar
  2. 2.
    Neu, H. C., Labthavikal, P.: Comparativein vitro activity of N-formimidoyl thienamycin against grampositive and gram-negative aerobic and anaerobic species and itsβ-lactamase stability. Antimicrobial Agents and Chemotherapy 1982, 21: 180–187.PubMedGoogle Scholar
  3. 3.
    Kropp, H., Sundelof, J. G., Hajdn, R., Kahan, F. M.: Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase-1. Antimicrobial Agents and Chemotherapy 1982, 22: 62–70.PubMedGoogle Scholar
  4. 4.
    Norrby, S. R., Alestig, K., Björnegard, B., Burman, L. A., Ferber, F., Huber, J. L., Jones, K. H., Kahan, F. M., Kahan, J. S., Kropp, H., Meisinger, M. S., Sundelof, J. G.: Urinary recovery of N-formimidoyl thienamycin (MK0787) as affected by coadministration of N-formimidoyl thienamycin dehydropeptidase inhibitors. Antimicrobial Agents and Chemotherapy 1983, 23: 300–307.PubMedGoogle Scholar
  5. 5.
    Norrby, S. R., Alestig, K., Ferber, F., Huber, J. L., Jones, K. H., Kahan, F. M., Meisinger, M. A., Rogers, J. D.: Pharmacokinetics and tolerance of N-formimidoyl thienamycin (MK0787) in humans. Antimicrobial Agents and Chemotherapy 1983, 23: 293–299.PubMedGoogle Scholar
  6. 6.
    Reed, M. D., Stern, R. C., O'Brien, C. S., Myers, C. M., Blumer, J. L.: Efficacy and pharmacokinetics of imipenem/cilastatin in cystic fibrosis. Clinical Pharmacology and Therapeutics 1984, 35: 268.Google Scholar
  7. 7.
    Schwartz, G. J., Haycock, G. B., Edelman, C. M., Spitzer, A.: A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976, 58: 259–263.PubMedGoogle Scholar
  8. 8.
    Brown, R. D., Manno, J. F.: ESTRIP, a BASIC computer program for obtaining initial polyexponential parameter estimates. Journal of Pharmaceutical Sciences 1978, 67: 1786–1791.Google Scholar
  9. 9.
    Loo, J. K., Riegelman, S. L.: Assessment of pharmacokinetic constants from post-infusion blood curves obtained after intravenous infusion. Journal of Pharmaceutical Sciences 1970, 59: 53–55.PubMedGoogle Scholar
  10. 10.
    Gibaldi, M., Perrier, D.: One-compartment model. In: Gibaldi, M., Perrier, D. (ed.): Pharmacokinetics. 2nd Edition. Marcel Dekker, Inc., New York, 1982, p. 12.Google Scholar
  11. 11.
    Rowland, M., Tozer, T. N.: Clearance and renal excretion. In: Rowland, M., Tozer, T. N. (ed.): Clinical Pharmacokinetics: Concepts and Applications. Lea and Febiger, Philadelphia, 1980, p. 55–57.Google Scholar
  12. 12.
    Batson, H. D. (ed.: An Introduction to Statistics in the Medical Sciences. Burgess Publishing Co., Minneapolis, 1956, p. 55–61.Google Scholar
  13. 13.
    Dixon, W. J., Massey, F. J. (ed.: Introduction to Statistical Analysis. 3rd Edition. McGraw Hill Publishing Co., New York, 1956, p. 193–221.Google Scholar
  14. 14.
    Snedecor, G. W., Cochran, W. G. (ed.: Statistical Methods. 6th Edition. Iowa State University Press, Ames, 1967, p. 381–418.Google Scholar
  15. 15.
    Morselli, P. L., Franco-Morselli, R., Bossi, L.: Clinical pharmacokinetics in newborns and infants: age-related differences and therapeutic implications. Clinical Pharmacokinetics 1980, 5: 485–527.PubMedCrossRefGoogle Scholar
  16. 16.
    Soyka, L. F.: Pediatric clinical pharmacology of digoxin. Pediatric Clinics of North America 1981, 28: 203–216.PubMedGoogle Scholar

Copyright information

© Vieweg Publishing 1984

Authors and Affiliations

  • R. F. Jacobs
    • 1
    • 3
  • G. L. Kearns
    • 1
    • 2
    • 3
  • A. L. Brown
    • 1
    • 3
  • J. M. Trang
    • 2
  • R. B. Kluza
    • 2
  1. 1.Department of PediatricsUniversity of Arkansas for Medical SciencesLittle Rock
  2. 2.Department of PharmaceuticsUniversity of Arkansas for Medical SciencesLittle Rock
  3. 3.Arkansas Children's HospitalLittle RockUSA

Personalised recommendations