, Volume 6, Issue 3, pp 149–167 | Cite as

A dynamic look at a class of skew distributions. A model with scientometric applications

  • A. Schubert
  • W. Glänzel


A theoretical model of repetitive events is presented and applied to the scientific publication process. Based on three simple postulates, a relation between population growth and distribution of authors by publication productivity in a scientific community is established. Predictions of the model are supported by empirical evidences.


Theoretical Model Empirical Evidence Population Growth Scientific Community Scientific Publication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. O. IRWIN, The Place of Mathematics in Medical and Biological Statistics,J. Roy. Stat. Soc., A 126 (1963) 1–45.Google Scholar
  2. [2]
    J. O. IRWIN, The Generalized Waring Distribution Applied to Accident Theory,J. Roy. Stat. Soc., A 131 (1968) 205–225.Google Scholar
  3. [3]
    J. O. IRWIN, The Generalized Waring Distribution, Part I.J. Roy. Stat. Soc., A 138 (1975) 18–31, Part II,J. Roy. Stat. Soc., A 138 (1975) 204–227, Part III.J. Roy. Stat. Soc., A 138 (1975) 374–384.Google Scholar
  4. [4]
    G. HERDAN,Quantitative Linguistics, Butterworths, London, 1964.Google Scholar
  5. [5]
    R. E. WYLLYS, Empirical and Theoretical Bases of Zipf's Law,Library Trends, 30 (1) (1981) 53–64.Google Scholar
  6. [6]
    J. TAGUE, The Success-Breeds-Success Phenomenon and Bibliometric Processes,J. Am. Soc. Inf. Sci., 32 (4) (1981) 280–286.Google Scholar
  7. [7]
    H. A. SIMON, On a Class of Skew Distribution Functions,Biometrika, 42 (1955) 425–440.Google Scholar
  8. [8]
    M. G. KENDALL, Natural Law in the Social Sciences,J. Roy. Stat. Soc., A 124 (1961) 1–16.Google Scholar
  9. [9]
    D. de SOLLA PRICE, A General Theory of Bibliometric and Other Cumulative Advantage Processes,J. Am. Soc. Inf. Sci., 27 (5) (1976) 292–306.Google Scholar
  10. [10]
    Y. IJIRI, H. A. SIMON, Skew Distributions and the Sizes of Business Firms, North-Holland Publ. Co., Amsterdam, 1977.Google Scholar
  11. [11]
    D. O. O'CONNOR, H. VOOS, Empirical Laws, Theory Construction and Bibliometrics,Library Trends, 30 (1) (1981) 9–20.Google Scholar
  12. [12]
    J. J. HUBERT, General Bibliometric Models,Library Trends, 30 (1) (1981) 65–81.Google Scholar
  13. [13]
    R. FRANK, Brand Choice as a Probability Proces,J. Business, 35 (1) (1962).Google Scholar
  14. [14]
    J. S. COLEMAN,Introduction to Mathematical Sociology, Collier-Macmillan Ltd., London, 1964.Google Scholar
  15. [15]
    E. XEKALAKI, Chance Mechanisms for the Univariate Generalized Waring Distribution and Related Characterizations, In: C. TAILLIE, G. P. PATIL (Eds),Statistical Distributions in Scientific Work, Vol. 4 —Models, Structures, and Characterizations, D. Reidel Publ. Co., Dordrecht, 1981. pp. 157–171.Google Scholar
  16. [16]
    A. J. LOTKA, The Frequency Distribution of Scientific Productivity,J. Washington Acad. Sci., 16 (12) (1926) 317–323.Google Scholar
  17. [17]
    J. VLACHY, The Frequency Distributions of Scientific Performance. A Bibliography of Lotka's Law and Related Phenomena,Scientometrics, 1 (1) (1978) 109–130.Google Scholar
  18. [18]
    R. HJERPPE, A Bibliography of Bibliometrics and Citation Indexing & Analysis, Report TRITA-LIB-2013, Stockholm, 1980.Google Scholar
  19. [19]
    R. HJERPPE, Supplement to a “Bibliography of Bibliometrics and Citation Indexing & Analysis” (TRITA-LIB-2013),Scientometrics, 4 (3) (1982) 241–281.Google Scholar
  20. [20]
    A. PRITCHARD, G. R. WITTIG,Bibliometrics. A Bibliography and Index. Vol. 1: 1874–1959, ALLM Books, Watford, 1981.Google Scholar
  21. [21]
    W. G. POTTER, Lotka's Law Revisited,Library Trends, 30 (1) (1981) 21–39.Google Scholar
  22. [22]
    G. P. PATIL, S. W. JOSHI,A Dictionary and Bibliography of Discrete Distributions, Oliver & Boyd Ltd., Edinburgh, 1968.Google Scholar
  23. [23]
    A. I. YABLONSKY, On Fundamental Regularities of the Distribution of Scientific Productivity,Scientometrics, 2 (1) (1980) 3–34.Google Scholar
  24. [24]
    M. WOODROOFE, B. HILL, On Zipf's Law,J. Appl. Prob., 12 (1975) 425–434.Google Scholar
  25. [25]
    S. D. HAITUN, Stationary Scientometric Distributions, Part I. Different Approximations,Scientometrics, 4 (1) (1982) 5–25, Part II. Non-Gaussian Nature of Scientific Activities,Scientometrics, 4 (2) (1982) 89–104, Part III. The Role of the Zipf Distribution,Scientometrics, 4 (3) (1982) 181–194.Google Scholar
  26. [26]
    R. K. MERTON, The Matthew Effect in Science, In: N. W. STORER Ed.,The Sociology of Science, Univ. Chicago Press, Chicago, 1973. pp. 439–459.Google Scholar
  27. [27]
    I. K. R. RAO, The Distribution of Scientific Productivity and Social Change,J. Am. Soc. Inf. Sci., 31 (2) (1980) 111–121.Google Scholar
  28. [28]
    R. C. COILE, Lotka's Frequency Distribution of Scientific Productivity,J. Am. Soc. Inf. Sci., 28 (6) (1977) 366–370.Google Scholar

Copyright information

© Akadémiai Kiadó 1984

Authors and Affiliations

  • A. Schubert
    • 1
  • W. Glänzel
    • 1
  1. 1.Department for Informatics and Science AnalysisLibrary of the Hungarian Academy of SciencesBudapest(Hungary)

Personalised recommendations