Scientometrics

, Volume 6, Issue 3, pp 149–167 | Cite as

A dynamic look at a class of skew distributions. A model with scientometric applications

  • A. Schubert
  • W. Glänzel
Article

Abstract

A theoretical model of repetitive events is presented and applied to the scientific publication process. Based on three simple postulates, a relation between population growth and distribution of authors by publication productivity in a scientific community is established. Predictions of the model are supported by empirical evidences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. O. IRWIN, The Place of Mathematics in Medical and Biological Statistics,J. Roy. Stat. Soc., A 126 (1963) 1–45.Google Scholar
  2. [2]
    J. O. IRWIN, The Generalized Waring Distribution Applied to Accident Theory,J. Roy. Stat. Soc., A 131 (1968) 205–225.Google Scholar
  3. [3]
    J. O. IRWIN, The Generalized Waring Distribution, Part I.J. Roy. Stat. Soc., A 138 (1975) 18–31, Part II,J. Roy. Stat. Soc., A 138 (1975) 204–227, Part III.J. Roy. Stat. Soc., A 138 (1975) 374–384.Google Scholar
  4. [4]
    G. HERDAN,Quantitative Linguistics, Butterworths, London, 1964.Google Scholar
  5. [5]
    R. E. WYLLYS, Empirical and Theoretical Bases of Zipf's Law,Library Trends, 30 (1) (1981) 53–64.Google Scholar
  6. [6]
    J. TAGUE, The Success-Breeds-Success Phenomenon and Bibliometric Processes,J. Am. Soc. Inf. Sci., 32 (4) (1981) 280–286.Google Scholar
  7. [7]
    H. A. SIMON, On a Class of Skew Distribution Functions,Biometrika, 42 (1955) 425–440.Google Scholar
  8. [8]
    M. G. KENDALL, Natural Law in the Social Sciences,J. Roy. Stat. Soc., A 124 (1961) 1–16.Google Scholar
  9. [9]
    D. de SOLLA PRICE, A General Theory of Bibliometric and Other Cumulative Advantage Processes,J. Am. Soc. Inf. Sci., 27 (5) (1976) 292–306.Google Scholar
  10. [10]
    Y. IJIRI, H. A. SIMON, Skew Distributions and the Sizes of Business Firms, North-Holland Publ. Co., Amsterdam, 1977.Google Scholar
  11. [11]
    D. O. O'CONNOR, H. VOOS, Empirical Laws, Theory Construction and Bibliometrics,Library Trends, 30 (1) (1981) 9–20.Google Scholar
  12. [12]
    J. J. HUBERT, General Bibliometric Models,Library Trends, 30 (1) (1981) 65–81.Google Scholar
  13. [13]
    R. FRANK, Brand Choice as a Probability Proces,J. Business, 35 (1) (1962).Google Scholar
  14. [14]
    J. S. COLEMAN,Introduction to Mathematical Sociology, Collier-Macmillan Ltd., London, 1964.Google Scholar
  15. [15]
    E. XEKALAKI, Chance Mechanisms for the Univariate Generalized Waring Distribution and Related Characterizations, In: C. TAILLIE, G. P. PATIL (Eds),Statistical Distributions in Scientific Work, Vol. 4 —Models, Structures, and Characterizations, D. Reidel Publ. Co., Dordrecht, 1981. pp. 157–171.Google Scholar
  16. [16]
    A. J. LOTKA, The Frequency Distribution of Scientific Productivity,J. Washington Acad. Sci., 16 (12) (1926) 317–323.Google Scholar
  17. [17]
    J. VLACHY, The Frequency Distributions of Scientific Performance. A Bibliography of Lotka's Law and Related Phenomena,Scientometrics, 1 (1) (1978) 109–130.Google Scholar
  18. [18]
    R. HJERPPE, A Bibliography of Bibliometrics and Citation Indexing & Analysis, Report TRITA-LIB-2013, Stockholm, 1980.Google Scholar
  19. [19]
    R. HJERPPE, Supplement to a “Bibliography of Bibliometrics and Citation Indexing & Analysis” (TRITA-LIB-2013),Scientometrics, 4 (3) (1982) 241–281.Google Scholar
  20. [20]
    A. PRITCHARD, G. R. WITTIG,Bibliometrics. A Bibliography and Index. Vol. 1: 1874–1959, ALLM Books, Watford, 1981.Google Scholar
  21. [21]
    W. G. POTTER, Lotka's Law Revisited,Library Trends, 30 (1) (1981) 21–39.Google Scholar
  22. [22]
    G. P. PATIL, S. W. JOSHI,A Dictionary and Bibliography of Discrete Distributions, Oliver & Boyd Ltd., Edinburgh, 1968.Google Scholar
  23. [23]
    A. I. YABLONSKY, On Fundamental Regularities of the Distribution of Scientific Productivity,Scientometrics, 2 (1) (1980) 3–34.Google Scholar
  24. [24]
    M. WOODROOFE, B. HILL, On Zipf's Law,J. Appl. Prob., 12 (1975) 425–434.Google Scholar
  25. [25]
    S. D. HAITUN, Stationary Scientometric Distributions, Part I. Different Approximations,Scientometrics, 4 (1) (1982) 5–25, Part II. Non-Gaussian Nature of Scientific Activities,Scientometrics, 4 (2) (1982) 89–104, Part III. The Role of the Zipf Distribution,Scientometrics, 4 (3) (1982) 181–194.Google Scholar
  26. [26]
    R. K. MERTON, The Matthew Effect in Science, In: N. W. STORER Ed.,The Sociology of Science, Univ. Chicago Press, Chicago, 1973. pp. 439–459.Google Scholar
  27. [27]
    I. K. R. RAO, The Distribution of Scientific Productivity and Social Change,J. Am. Soc. Inf. Sci., 31 (2) (1980) 111–121.Google Scholar
  28. [28]
    R. C. COILE, Lotka's Frequency Distribution of Scientific Productivity,J. Am. Soc. Inf. Sci., 28 (6) (1977) 366–370.Google Scholar

Copyright information

© Akadémiai Kiadó 1984

Authors and Affiliations

  • A. Schubert
    • 1
  • W. Glänzel
    • 1
  1. 1.Department for Informatics and Science AnalysisLibrary of the Hungarian Academy of SciencesBudapest(Hungary)

Personalised recommendations