Calcified Tissue Research

, Volume 13, Issue 1, pp 73–82 | Cite as

Hydroxide and carbonate in rat bone mineral and its synthetic analogues

  • J. D. Termine
  • D. R. Lundy
Original Papers

Abstract

Infrared spectral data indicate that both native rat bone mineral and synthetic apatites formed at physiological pH, ionic strength and temperature are extensively deficient in hydroxide ion content; the data also indicate that these biological and synthetic apatites contain considerable internal distortions (lattice defects). In addition, a significant portion of the CO32- ions in rat bone mineral is loosely-structured in either an amorphous or surface environment. Carbonate ions in vacuum-heated bone or solution-ripened synthetic (physiological pH) apatites appear to be in multiple local environments. Internal CO32- in these materials may be substituted in PO43- and (in much lesser amounts) OH positions, although considerable deviation from or within these sites is probable due to lattice defects. Carbonateapatites produced by thermal conversion (600o) of amorphous calcium phosphates containing 4–9% CO32- exhibit CO32- mainly in OH environments. Thermal recrystallization of biological and synthetic apatites in an air atmosphere increases OH content and reorganizes CO32- locales. However, such extremely well-crystallized products are not at all representative of their native apatitic precursors.

Key words

Bone Apatite Hydroxide Carbonate Infrared 

Résumé

L'étude de spectres infra-rouges montre que le minéral osseux de jeune rat et les apatites synthétiques, formés à des pH, force ionique et température physiologiques sont très déficients en ion OH; ces apatites biologiques et synthétiques présentent d'importants défauts internes de maille. En outre, une proportion significative des ions CO32- de mineral osseux de rat est structurée de façon lâche dans un environnement amorphe ou superficiel. Les ions carbonate dans l'os chauffé sous vide ou dans les apatites synthétiques formés à pH physiologique paraissent être situés dans des environnements locaux multiples. Le CO32- contenu dans ces structures peut se substituer dans des positions PO43- et (à un degré moindre) OH, bien que des variations importantes de ou dans ces positions sont dues à des défauts de maille. Les carbonato-apatites, formés par transformation thermique (600o) de phosphates calciques amorphes et contenant 4–9% de CO32-, présentent surtout du CO32- dans des environnements OH. Une recristallisation thermique des apatites biologiques et synthétiques, dans une atmosphère d'air, augmente le contenu en OH et redispose les positions CO32-. Cependant, de telles formations bien cristallisées sont différentes des précurseurs apatitiques.

Zusammenfassung

Die Infrarotspektroskopie ergab, daß sowohl natives Rattenknochenmineral als auch synthetische Apatite, welche bei physiologischem pH, Ionenstärke und Temperatur gebildet wurden, an Hydroxydionen stark defizient sind. Es ist ebenfalls ersichtlich, daß diese biologischen und synthetischen Apatitkristalle beträchtliche innere Verzerrungen aufweisen (Gitterdefekte). Weiterhin zeigt ein bedeutender Anteil der CO32--Ionen im Rattenknochenmineral eine lockere Struktur in amorpher Umgebung oder an der Oberfläche. In Vakuumerhitzem Knochen oder in synthetischen Apatit (mit physiologischem pH), welches in der Lösung gebildet wurde, scheinen sich die Carbonationen in verschiedenen Umgebungen zu finden. CO32- im Inneren dieser Stoffe kann in PO43--und (in viel kleineren Mengen) OH-Positionen ausgetauscht werden, obwohl eine beträchtliche Abweichung von und innerhalb dieser Stellen wahrscheinlich auf Gitterdefekte zurückzuführen ist. Carbonat-Apatite, welche durch die thermische Umwandlung (600°C) von 4–9% CO32- enthaltendem amorphem Calciumphosphat gebildet wurden, zeigen in erster Linie in OH-Umgebung CO32-. Die thermische Umkristallisierung von biologischen und synthetischen Apatiten in einer Luftatmosphäre erhöht den OH-Gehalt und verteilt die CO32--Lokalisationen neu. Solche sehr schön kristallisierten Produkte spiegeln jedoch durchaus nicht ihre nativen Apatitvorbilder wider.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter, J. D., Biltz, R. M., Pellegrino, E. D.: The physical state of bone carbonate: a comparative infrared study in several mineralized tissues. Yale J. Biol. Med.38, 456–470 (1966)PubMedGoogle Scholar
  2. Bonel, G., Montel, G.: Sur une nouvelle apatite carbonatée synthétique. C.R. Acad. Sci. (Paris)258, 923–926 (1964)Google Scholar
  3. Bonel, G., Montel, G.: Sur l'introduction des ions CO3 −2 dans le réseau des apatites calciques. C. R. Acad. Sci. (Paris) C263, 1010–1013 (1966)Google Scholar
  4. Brown, W. E.: Crystal growth of bone mineral. Clin. Orthop.44, 205–220 (1966)PubMedGoogle Scholar
  5. Carlström, D.: Mineralogical carbonate-containing apatites. In: Internat. symposium. on structural properties of hydroxyapatite and related compounds (R. A. Young and W. E. Brown, eds.), chapt. 10. New York: Gordon and Breach in press 1968Google Scholar
  6. Eanes, E. D., Termine, J. D., Nylen, M. U.: An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calcif. Tiss. Res.12, 143–158 (1973)Google Scholar
  7. Eanes, E. D., Gillessen, I. H., Posner, A. S.: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965)Google Scholar
  8. Elliott, J. C.: Synthetic and biological carbonate-containing apatites. In: Internat. symposium on structural properties of hydroxyapatite and related compounds (R. A. Young and W. E. Brown, eds.), chap. 11. New York: Gordon and Breach in press 1968Google Scholar
  9. Elliott, J. C.: The interpretation of the infrared absorption spectra of some carbonatecontaining apatites. In: Tooth enamel. Its composition, properties and fundamental structure (M. V. Stack and R. W. Fearnhead, eds.), p. 20–22 and 50–58. Bristol: John Wright & Sons, Ltd. 1965Google Scholar
  10. Emerson, W. H., Fischer, E. E.: The infra-red absorption spectra of carbonate in calcified tissues. Arch. oral Biol.7, 671–683 (1962)Google Scholar
  11. Fowler, B. O.: Infrared spectra of apatites. In: Internat. symposium on structural properties of hydroxyapatite and related compounds (R. A. Young and W. E. Brown, eds.), chapt. 7. New York: Gordon and Breach in press 1968Google Scholar
  12. Fowler, B. O., Moreno, E. C., Brown, W. E.: Infrared spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch. oral Biol.11, 477–492 (1966)PubMedGoogle Scholar
  13. LeGeros, R. Z., LeGeros, J. P., Trautz, O. R., Klein, E.: Spectral properties of carbonate in carbonate-containing apatites. In: Developments in applied spectroscopy. vol. 7B (E. L. Grove and A. J. Perkins, eds.), p. 3–12. New York: Plenum Press 1970Google Scholar
  14. LeGeros, R. Z., Trautz, O. R., LeGeros, J. P., Klein, E.: Carbonate substitution in the apatite structure. Bull. Soc. Chim. Fr. (no special)2 e trimestre, 1712–1718 (1968)Google Scholar
  15. Neuman, W. F., Mulryan, B. J.: Synthetic hydroxyapatite crystals. III. The carbonate system. Calcif. Tiss. Res.1, 94–104 (1967)Google Scholar
  16. Pellegrino, E. D., Biltz, R. M.: Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex. Calcif. Tiss. Res.10, 128–135 (1972)Google Scholar
  17. Posner, A. S.: Crystal chemistry of bone mineral. Physiol. Rev.49, 760–792 (1969)PubMedGoogle Scholar
  18. Termine, J. D., Eanes, E. D.: Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif. Tiss. Res.10, 171–197 (1972)Google Scholar
  19. Termine, J. D., Eanes, E. D., Greenfield, D. J., Nylen, M. U., Harper, R. A.: Hydrazinedeproteinated bone mineral: physical and chemical properties. Calcif. Tiss. Res.12, 73–90 (1973)Google Scholar
  20. Wondratschek, H.: Other compounds with the apatite structure. In: Internat. symposium on structural properties of hydroxyapatite and related compounds (R. A. Young and W. E. Brown, eds.), chapt. 3. New York: Gordon & Breach in press 1968Google Scholar
  21. Note Added in Proof. Internal OH deficiencies (20–30%) have also been observed in tooth enamel by Young and Spooner. Arch. oral Biol.15, 47–63 (1969)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • J. D. Termine
    • 1
  • D. R. Lundy
    • 1
  1. 1.Molecular Structure Section, Laboratory of Biological Structure National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations