Advertisement

Microbial Ecology

, Volume 4, Issue 3, pp 207–214 | Cite as

Growth responses of ciliate protozoa to the abundance of their bacterial prey

  • William D. Taylor
Article

Abstract

The growth rate or numerical response of five species of bactivorous ciliates to the abundance ofEnterobacter aerogenes was examined in monoxenic culture. The ciliatesColpidium campylum, C. colpoda, Glaucoma scintillons, G. frontata, andCyclidium glaucoma were isolated from a small pond. Four were grown in shaken cultures, while three were grown in cultures in which the bacteria were allowed to settle on the bottom of the culture vessel. Of the seven response curves generated, four had distinct thresholds, so that the Michaelis-Menten model usually fitted to ciliate numerical response curves was not appropriate. In shaken cultures, half-saturation prey densities ranged from 5.5 × 106 to 42.9 × 106 bacteria/ml. In unshaken cultures, half-saturation densities ranged from 0.057 × 106 to 14.6 × 106 bacteria/cm2. Two species grown on both suspended and settled bacteria attained higher growth rates and had lower half-saturation prey densities feeding on settled bacteria.

Keywords

Growth Rate Glaucoma Response Curve Nature Conservation High Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashby, R. E.: Long term variations in a protozoan chemostat culture. J. Exp. Mar. Biol. Ecol.24, 227–235 (1976)CrossRefGoogle Scholar
  2. 2.
    Berk, S. G., R. R. Colwell, and E. B. Small: A study of feeding responses to bacterial prey by estuarine ciliates. Trans. Am. Microsc. Soc.95, 514–520 (1976)Google Scholar
  3. 3.
    Bott, T. L.: Nutrient cycles in natural systems: Microbial involvement. In: J. Tourbier and R. W. Pierson (Eds.): Biological Control of Water Pollution, pp. 41–42. University of Pennsylvania Press, Philadelphia (1976)Google Scholar
  4. 4.
    Canale, R. P., T. D. Lustig, P. M. Kehrberger, and J. E. Salvo: Experimental and mathematical modelling studies of protozoan predation on bacteria. Biotechnol. Bioeng.15, 707–728 (1973)CrossRefGoogle Scholar
  5. 5.
    Contois, D. E.: Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J. Gen. Microbiol.21, 40–50 (1959)PubMedGoogle Scholar
  6. 6.
    Curds, C. R., and A. Cockburn: Continuous monoxenic culture ofTetrahymena pyriformis. J. Gen. Microbiol.66, 95–108 (1971)PubMedGoogle Scholar
  7. 7.
    Dive, D.: Influence de la concentration bactérienne sur la croissance deColpidium campylum. J. Protozool.22, 545–550 (1975)Google Scholar
  8. 8.
    Drake, J. F., and H. M. Tsuchiya: Predation onEscherichia coli byColpoda steint. Appl. Environ. Microbiol.31, 870–874 (1976)PubMedGoogle Scholar
  9. 9.
    Drake, J. F., and H. M. Tsuchiya: Growth kinetics ofColpoda steini onEscherichia coli. Appl. Environ. Microbiol.34, 18–22 (1977)PubMedGoogle Scholar
  10. 10.
    Endrenyi, L.: Statistical problems of kinetic model building. Symp. Biol. Hung.18, 11–30 (1974)Google Scholar
  11. 11.
    Endrenyi, L., and F. H. F. Kwong: Design and analysis of hyperbolic kinetic and binding experiments. In: H. C. Hemker and B. Hess (Eds.): Analysis and Simulation of Biochemical Systems, pp. 219–237. North-Holland, Amsterdam (1972)Google Scholar
  12. 12.
    Hamilton, R. D., and J. E. Preslan: Observations on the continuous culture of a planktonic phagotrophic protozoan. J. Exp. Mar. Biol. Ecol.5, 94–104 (1970)Google Scholar
  13. 13.
    Harding, J. P.: Quantitative studies on the ciliateGlaucoma. I. The regulation of the size and fission rate by the bacterial food supply. J. Exp. Biol.14, 422–430 (1937)Google Scholar
  14. 14.
    Holling, C. S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can.45, 1–60 (1965)Google Scholar
  15. 15.
    Jannasch, H. W.: Steady state and the chemostat in ecology. Limnol. Oceanogr.10, 716–720 (1974)Google Scholar
  16. 16.
    Jost, J. L., J. F. Drake, A. G. Fredrickson, and H. M. Tsuchiya: Interactions ofTetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J. Bacteriol.113, 834–840 (1973)PubMedGoogle Scholar
  17. 17.
    Jost, J. L., J. F. Drake, H. M. Tsuchiya, and A. G. Fredrickson: Microbial food chains and webs. J. Theor. Biol.41, 461–484 (1973)CrossRefPubMedGoogle Scholar
  18. 18.
    Laybourn, J. E. M., and J. M. Stewart: Studies on consumption and growth in the ciliateColpidium campylum Stokes. J. Anim. Ecol.44, 165–174 (1975)Google Scholar
  19. 19.
    Lehman, J. T.: The filter feeder as an optimal forager, and the predicted shapes of feeding curves. Limnol. Oceanogr.21, 501–516 (1976)Google Scholar
  20. 20.
    Pianka, E. R.: On r- and K-selection. Am. Nat.104, 592–597 (1970)CrossRefGoogle Scholar
  21. 21.
    Proper, G., and J. C. Garver: Mass culture of the protozoaColpoda steini. Biotechnol. Bioeng.8, 287–296 (1966)CrossRefGoogle Scholar
  22. 22.
    Rasmussen, L.: Nutrient uptake inTetrahymena pyriformis. Carlsberg Res. Commun.41, 143–167 (1976)Google Scholar
  23. 23.
    Sieburth, J. M.: Bacterial substrates and productivity in marine ecosystems. Annu. Rev. Ecol. Syst.7, 259–285 (1976)CrossRefGoogle Scholar
  24. 24.
    Steele, J. H.: The Structure of Marine Ecosystems. Harvard University Press, Cambridge, Mass. (1974)Google Scholar
  25. 25.
    Sudo, R., K. Kobayashi, and S. Aiba: Some experiments and analysis of a predator-prey model: interaction betweenColpidium campylum andAlcaligenes faecalis in continuous and mixed culture. Biotechnol. Bioeng.17, 167–184 (1975)Google Scholar
  26. 26.
    Taylor, W. D., and J. Berger: Growth ofColpidium campylum in monoxenic batch culture. Can. J. Zool.54, 392–398 (1976)Google Scholar
  27. 27.
    Taylor, W. D., and J. Berger: Growth responses of cohabiting ciliate protozoa to various prey bacteria. Can. J. Zool.54, 1111–1114 (1976)Google Scholar
  28. 28.
    Villarreal, E., R. R. Canale, and Z. Akcasu: Transport equations for a microbial predator-prey community. Microb. Ecol.3, 131–142 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1978

Authors and Affiliations

  • William D. Taylor
    • 1
  1. 1.Department of ZoologyUniversity of TorontoToronto

Personalised recommendations