Microbial Ecology

, Volume 19, Issue 1, pp 111–118 | Cite as

Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts

  • Robert J. PalmerJr.
  • E. Imre Friedmann


Two cryptoendolithic microbial communities, lichens in the Ross Desert of Antarctica and cyanobacteria in the Negev Desert, inhabit porous sandstone rocks of similar physical structure. Both rock types adsorb water vapor by physical mechanisms unrelated to biological processes. Yet the two microbial communities respond differently to water stress: cryp-toendolithic lichens begin to photosynthesize at a matric water potential of −46.4 megaPascals (MPa) [70% relative humidity (RH) at 8°C], resembling thallose desert lichens. Cryptoendolithic cyanobacteria, like other prokaryotes, photosynthesize only at very high matric water potentials [> −6.9 MPa, 90% RH at 20°C].


Relative Humidity Sandstone Water Vapor Microbial Community Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belly R, Brock T (1967) Ecology of iron-oxidizing bacteria in pyritic materials associated with coal. J Bacteriol 117:726–732Google Scholar
  2. 2.
    Friedmann EI (1971) Light and scanning electron microscopy of the endolithic desert algal habitat. Phycologia 10:411–428Google Scholar
  3. 3.
    Friedmann EI (1977) Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarct J US 12:26–30Google Scholar
  4. 4.
    Friedmann EI (1978) Melting snow in the dry valleys is a source of water for endolithic microorganisms. Antarct J US 13:162–163Google Scholar
  5. 5.
    Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Origins Life 10:223–235Google Scholar
  6. 6.
    Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053Google Scholar
  7. 7.
    Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251–260PubMedGoogle Scholar
  8. 8.
    Friedmann EI, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–196Google Scholar
  9. 9.
    Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: continuous nanoclimate data, 1984 to 1986. Polar Biol 7:237–287Google Scholar
  10. 10.
    Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Reddy CA (ed) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 177–185Google Scholar
  11. 11.
    Friedmann EI, Ocampo-Friedmann R (1985) Blue-green algae in arid cryptoendolithic habitats. Arch Hydrobiol Suppl 71:349–350Google Scholar
  12. 12.
    Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478Google Scholar
  13. 13.
    Greenfield LG (1988) Forms of nitrogen in Beacon sandstone rocks containing endolithic microbial communities in Southern Victoria Land, Antarctica. Polarforschung 58:211–218Google Scholar
  14. 14.
    Griffin DM, Luard EJ (1979) Water stress and microbial ecology. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, New York, pp 49–64Google Scholar
  15. 15.
    Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens. Polar Biol 1:227–232Google Scholar
  16. 16.
    Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora 171:216–235Google Scholar
  17. 17.
    Katznelson I (1958) Rainfall in Palestine (in Hebrew). Meterological Papers 8:37–70Google Scholar
  18. 18.
    Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110Google Scholar
  19. 19.
    Lange OL, Schulze E, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt vonRamalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159:38–62Google Scholar
  20. 20.
    Lange OL, Matthes U (1981) Moisture-dependent CO2 exchange of lichens. Photosynthetica 15:555–574Google Scholar
  21. 21.
    Meeks JC, Castenholz RW (1971) Growth and photosynthesis in an extreme thermophile,Synechococcus lividus (Cyanophyta). Archiv Mikro 78:25–41Google Scholar
  22. 22.
    Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb Ecology 16:271–289Google Scholar
  23. 23.
    O'Brien FEM (1948) The control of humidity by saturated salt solutions. J Sci Instrum 25:73–76CrossRefGoogle Scholar
  24. 24.
    Palmer RJ Jr, Friedmann EI (1988) Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi. Polarforschung 58:189–192PubMedGoogle Scholar
  25. 25.
    Palmer RJ Jr, Nienow JA, Friedmann EI (1987) Control of matric water potential by temperature differential. J Micro Methods 6:323–326Google Scholar
  26. 26.
    Potts M, Friedmann EI (1981) Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch Microbiol 130:267–271Google Scholar
  27. 27.
    Scherer S, Ernst A, Chen TW, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62:418–423Google Scholar
  28. 28.
    Siebert J, Hirsch P (1988) Characterization of selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land). Polar Biol 9:37–44PubMedGoogle Scholar
  29. 29.
    Troller JA (1980) Influence of water activity on microorganisms in food. Food Technology May:76–80, 82Google Scholar
  30. 30.
    Vestal JR (1987) Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl Env Microbiol 54:960–965Google Scholar
  31. 31.
    Vestal JR, Friedmann EI (1983) In situ carbon metabolism by the cryptoendolithic microbial community in the Antarctic cold desert. Antarct J US 17(1982 review):190–191Google Scholar
  32. 32.
    de Winder B, Matthijs HCP, Mur LR (in press) The role of water retaining substrata on the photosynthetic response of three drought tolerant phototrophic microorganisms isolated from a terrestrial habitat. Arch MicrobiolGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Robert J. PalmerJr.
    • 1
  • E. Imre Friedmann
    • 1
  1. 1.Polar Desert Research Center and Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations