Advertisement

Calcified Tissue Research

, Volume 12, Issue 1, pp 281–294 | Cite as

Glycosaminoglycans of the odontoblast-predentine layer in dentinogenically active porcine teeth

  • Anders Linde
Original Papers

Abstract

The glycosaminoglycans (GAGs) in the odontoblast-predentine layer, dissected out from dentinogenically active permanent porcine teeth, have been isolated and analyzed with the following results. 1. Light and electron microscopy indicated that odontoblasts and predentine were present in roughly equal amounts. 2. The total hexosamines accounted for 0.84 μg/mg tissue wet weight (2.9 μg/mg dry weight). 3. Cellulose acetate membrane electrophoresis gave three distinct peaks with the electrophoretic mobilities of hyaluronate (HA), keratin sulphate (KS) and chondroitin sulphate (CS). 4. Five hexosamine-containing fractions were obtained when the GAGs were separated on CPC cellulose microcolumns. These were identified as a predominantly 4-sulphated CS (30% of the total) a predominantly 6-sulphated CS (16%), HA (14%), dermatan sulphate (DS) 7%, and a fraction containing both KS and glycoproteins (32%). 5. The hexosamine constituents of the CS and HA fractions, separated on Dowex 50W-X8 ion exchange resin, showed only galactosamine and glucosamine respectively thus supporting the identities of the GAGs. 6. The “carbazole-orcinol ratio” of the DS fraction was 0.62. 7. KS, isolated by ECTEOLA-cellulose chromatography and by hydrogen sulphite precipitation, accounted for around 4% of the total hexosamine. 8. A “neutral magnesium chloride elution profile” and an “acid magnesium chloride elution profile” were obtained for the CS+DS.

Key words

Glycosaminoglycans Odontoblasts Predentine Mineralization 

Résumé

Les glycosaminoglycanes (GAGs) de la couche prédentine-odontoblastes, isolée à partir de dents permanentes de porcs, formant de la dentine, ont été analysés. 1. La microscopie optique et électronique montrent que les odontoblastes et la prédentine sont présents en quantité à peu près équivalente. 2. Les hexosamines constituent 0.84 μg/mg de poids humide de tissu (2.9 μg/mg en poids sec). 3. Par électrophorèse à membrane d'acétate de cellulose, on obtient trois pics distincts avec les mobilités électrophorétiques de l'hyaluronate (HA), du sulfate de kératane (KS) et du sulfate de chondroitine (CS). 4. Cinq fractions contenant de l'hexosamine sont obtenues lorsque les GAGs sont séparés sur des microcolonnes de CPC cellulose. Ces fractions contiennent un CS surtout 4-sulfaté (30% du total), un CS surtout 6-sulfaté (16%) HA (14%), sulfate de dermatane (DS) 7% et une fraction contenant à la fois KS et des glycoprotéines (32%). 5. Les constituants en hexosamine des fractions CS et HA, séparés sur résine échangeuse d'ion Dowex 50 W-X8 ne présentent respectivement que de la galactosamine et de la glucosamine confirmant la composition en GAGs. 6. Le «rapport carbazole-orcinol» de la fraction DS est de 0.62. 7. KS, déterminé par chromatographie avec de l'ECTEOLA-cellulose et par précipitation de sulfite hydrogéné, constitue environ 4% de l'hexosamine total. 8. un «profil d'élution de chlorure de magnésium neutre» et «un profil d'élution de chlorure de magnésium acide» sont obtenus pour CS+DS.

Zusammenfassung

Die Glykosaminoglykane (GAGs) der Odontoblasten-Prädentin-Schicht, welche von Dentin-bildenden bleibenden Schweinezähnen herausseziert wurden, wurden isoliert und analysiert und ergaben folgende Resultate: 1. Licht-und Elektronenmikroskopie deuteten darauf hin, daß Odontoblasten und Prädentin zu ungefähr gleichen Teilen vorhanden waren. 2. Der Gehalt an Gesamthoexosaminen des Gewebes betrug 0,84 μg/mg Naßgewicht (2,9 μg/mg Trokkengewicht). 3. Die Celluloseacetat-Membranelektrophorese zeigte drei deutliche Maxima zusammen mit dem elektrophoretischen Bewegungsvermögen von Hyaluronsäure (HA), Keratin-Schwefelsäure (KS) und Chondroitin-Schwefelsäure (CS). 4. Fünf Hexosamin-haltige Fraktionen erhielt man durch Auftrennen der GAGs mit CPC-Cellulose-Mikrokolonnen. Diese wurden als vorwiegend 4-sulfatiertes CS (30% der Gesamtmenge), vorwiegend 6-sulfatiertes CS (16%), HA (14%), Dermatinsulfat (DS, 7%) und eine Fraktion, welche beides, KS und Glykoproteine (32%) enthielt, identifiziert. 5. Die Hexosaminanteile der CS-und HA-Fraktionen, welche mit Dowex 50W-X8 Ionenaustauschharz getrennt wurden, zeigten nur die Anwesenheit von Galactosamin und Glucosamin, was die Beschaffenheit der GAGs unterstreicht. 6. Das Verhältnis “Carbazol-Orcinol” der DS-Funktion war 0,62. 7. KS, welche mit ECTEOLA-Cellulose-Chromatographie und Hydrogensulfit-Fällung gemessen wurde, machte etwa 4% der Gesamthoexosamine aus. 8. Für CS und DS wurde ein “neutrales Magnesiumchlorid-Elutionsprofil” und ein “saures Magnesiumchlorid-Elutionsprofil” aufgenommen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anseth, A., Antonopoulos, C. A., Bjelle, A., Fransson, L. Å.: Fractionation and quantitative determination of keratan sulfate using cetylpyridiniumchloride and ECTEOLA-cellulose. Biochim. biophys. Acta (Amst.)215, 522–526 (1970).Google Scholar
  2. Anseth, A., Laurent, T. C.: Studies on corneal polysaccharides. Exp. Eye Res.1, 25–38 (1961).PubMedGoogle Scholar
  3. Antonopoulos, C. A.: Separation of glucosamine and galactosamine on the microgram scale and their quantitative determination. Arkiv Kemi25, 243–247 (1966).Google Scholar
  4. Antonopoulos, C. A., Gardell, S., Szirmai, J. A., Tyssonsk, E. R.: de Determination of glycosaminoglycans (mucopolysaccharides) from tissues on the microgram scale. Biochim. biophys. Acta (Amst.)83, 1–19 (1963).Google Scholar
  5. Baylink, D., Wergedal, J., Thompson, E.: Loss of proteinpolysaccharides at sites where bone mineralization is initiated. J. Histochem. Cytochem.20, 279–292 (1972).PubMedGoogle Scholar
  6. Bevelander, G., Nakahara, H.: The formation and mineralization of dentin. Anat. Rec.156, 303–324 (1966).Google Scholar
  7. Boström, H.: Chemical and autoradiographic studies on the sulphate exchange in sulphomucopolysaccharides. Arkiv Kemi6, 43–57 (1953).Google Scholar
  8. Brown, A. H.: Determination of pentose in the presence of large quantities of glucose. Arch. Biochem. Biophys.11, 269–278 (1946).Google Scholar
  9. Clark, R. D., Smith, J. G., Davidson, E. A.: Hexosamine and acid glycosaminoglycans in human teeth. Biochim. biophys. Acta (Amst.)101, 267–272 (1965).Google Scholar
  10. Disbrey, B. D., Rack, J. H.: Histological laboratory methods p. 101. Edinburgh: Livingstone 1970.Google Scholar
  11. Dische, Z.: New color reactions for determination of sugars in polysaccharides. Meth. biochem. Anal.2, 313–358 (1955).Google Scholar
  12. Fiore-Donno, G., Baume, L-J.: Etude histochimique de la dentinogenèse humaine. Helv. odont. Acta10, 141–185 (1966).Google Scholar
  13. Fransson, L-Å., Anseth, A., Antonopoulos, C. A., Gardell, S.: Structure of dermatan sulphate. VI. The use of cetylpyridinium chloride cellulose micro columns for determination of the hybrid structure of dermatan sulphates. Carbohyd. Res.15, 73–89 (1970).Google Scholar
  14. Fransson, L-Å., Rodén, L., Spach, M. L.: Automated ion-exchange chromatography of uronic acid containing oligosaccharides. Analyt. Biochem.21, 317–330 (1968).Google Scholar
  15. Fullmer, H. M., Alpher, N.: Histochemical polysaccharide reactions in human developing teeth. Lab. Invest.7, 163–170 (1958).PubMedGoogle Scholar
  16. Hjertquist, S-O., Vejlens, L.: The glycosaminoglycans of dog compact bone and epiphyseal cartilage in the normal state and in experimental hyperparathyroidism. Calcif. Tiss. Res.2, 314–333 (1968).Google Scholar
  17. Karnovsky, M. J.: A formaldehyde glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol.27, 137 A (1965).Google Scholar
  18. Kennedy, J. S., Kennedy, G. D. C.: Sulphated mucopolysaccharides in rodent teeth. J. Anat. (Lond.)91, 398–408 (1957).Google Scholar
  19. Laurent, T. C., Scott, J. E.: Molecular weight fractionation of polyanions by cetylpyridinium chloride in salt solutions. Nature (Lond.)202, 661–662 (1964).Google Scholar
  20. Laurent, T. C., Wasteson, Å., Öbrink, B.: Macromolecular properties of glycosaminoglycans (mucopolysaccharides) and proteoglycans. In: Aging of connective and skeletal tissue, p. 65–80. Stockholm: Nordiska Bokhandelns Förlag 1969.Google Scholar
  21. Lennox, D. W., Provenza, D. V.: Mucopolysaccharides in odontogenesis. Histochem.23, 328–341 (1970).Google Scholar
  22. Linde, A.: Glycosaminoglycans (mucopolysaccharides) of the porcine dental pulp. Arch. oral Biol.15, 1035–1046 (1970).PubMedGoogle Scholar
  23. Linde, A.: A method for the biochemical study of enzymes in the rat odontoblast layer during dentinogenesis. Arch. oral Biol.17, 1209–1212 (1972a).PubMedGoogle Scholar
  24. Linde, A.: A study of the dental pulp glycosaminoglycans from permanent human teeth and the rat and rabbit incisors. Arch. oral Biol.,18, 49–59 (1972b).Google Scholar
  25. Linde, A.: Glycosaminoglycans of the rat incisor pulp. Biochim. biophys. Acta (Amst.)279, Suppl. 446–455 (1972c).Google Scholar
  26. Linde, A.: Glycosaminoglycans of the dental pulp. A biochemical study. Scand. J. dent. Res.,81, 177–201 (1973).PubMedGoogle Scholar
  27. Martens, P.: Human dentinogenesis with special regard to the formation of peri-tubular crown dentine and zones in fetal decidous and unabraded permanent teeth. Odont. T.76, 297–344 (1968).Google Scholar
  28. Matthiessen, M. E.: Comparative histochemical studies on the development of teeth in man and in the mouse. Acta anat. (Basel)70, 14–25 (1968).Google Scholar
  29. Öbrink, B.: Studies on the interactions between collagen and glycosaminoglycans. Acta Universitatis Upsaliensis, vol. 108. Stockholm: Almqvist & Wiksell 1971.Google Scholar
  30. Pugliarello, M. C., Vittur, F., Bernard, B. de, Bonucci, E., Ascenzi, A.: Chemical modifications in osteones during calcification. Calcif. Tiss. Res.5, 108–114 (1970).Google Scholar
  31. Quintarelli, G., Dellovo, M. C.: Mucopolysaccharide histochemistry of rat tooth germs. Histochem.3, 195–207 (1963).Google Scholar
  32. Scott, J. E.: Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Meth. biochem. Anal.8, 145–197 (1960).Google Scholar
  33. Sundström, B.: New aspects on the utilization of inorganic sulphate during dentin formation. Histochem.26, 61–66 (1971).Google Scholar
  34. Takuma, S., Nagai, N.: Ultrastructure of rat odontoblasts in various stages of their development and maturation. Arch. oral Biol.16, 993–1011 (1971).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Anders Linde
    • 1
  1. 1.Department of HistologyUniversity of GothenburgGöteborg 33Sweden

Personalised recommendations