Microbial Ecology

, Volume 4, Issue 4, pp 303–317 | Cite as

Microorganisms and heavy metal toxicity

  • Geoffrey M. Gadd
  • Alan J. Griffiths

Abstract

The environmental and microbiological factors that can influence heavy metal toxicity are discussed with a view to understanding the mechanisms of microbial metal tolerance. It is apparent that metal toxicity can be heavily influenced by environmental conditions. Binding of metals to organic materials, precipitation, complexation, and ionic interactions are all important phenomena that must be considered carefully in laboratory and field studies. It is also obvious that microbes possess a range of tolerance mechanisms, most featuring some kind of detoxification. Many of these detoxification mechanisms occur widely in the microbial world and are not only specific to microbes growing in metal-contaminated environments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelson, P. H., and E. Aldous: Ion antagonisms in microorganisms: interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc, and manganese. J. Bacteriol.60, 401–413 (1950)PubMedGoogle Scholar
  2. 2.
    Albert, A.:Selective Toxicity. Methuen, London (1965)Google Scholar
  3. 3.
    Ashida, J.: Adaptation of fungi to metal toxicants. Annu. Rev. Phytopathol.3, 153–174 (1965)CrossRefGoogle Scholar
  4. 4.
    Ashida, J., N. Higashi, and T. Kikuchi: An electron microscope study on copper precipitations by copper resistant yeast cells. Protoplasma57, 27–32 (1963)CrossRefGoogle Scholar
  5. 5.
    Ashida, J., and H. Nakamura: Role of sulphur metabolism in copper resistance of yeast. Plant Cell Physiol.1, 71–79 (1959)Google Scholar
  6. 6.
    Ashworth, L. J., and J. V. Amin: A mechanism for mercury tolerance in fungi. Phytopathology54, 1459–1463 (1964)Google Scholar
  7. 7.
    Avakyan, Z. A.: Comparative toxicity of free ions and complexes of copper and amino acids toCandida utilis. Microbiology40, 363–368 (1971)PubMedGoogle Scholar
  8. 8.
    Babich, H., and G. Stotzky: Reductions in the toxicity of cadmium to microorganisms by clay minerals. Appl. Environ. Microbiol.33, 696–705 (1977)Google Scholar
  9. 9.
    Babich, H., and G. Stotzky: Effect of cadmium on fungi and on interactions between fungi and bacteria in soil: influence of clay minerals and pH. Appl. Environ. Microbiol.33, 1059–1066 (1977)PubMedGoogle Scholar
  10. 10.
    Bachenheimer, A. G., and E. O. Bennett: The sensitivity of mixed populations of bacteria to inhibitors. 1. The mechanism by whichDesulfovibrio desulfuricans protectsPseudomonas aeruginosa from the toxicity of mercurials. Antonie van Leeuwenhoek27, 180–188 (1961)PubMedGoogle Scholar
  11. 11.
    Bachmann, R. W.: Zinc-65 in studies of the fresh water zinc cycle. Proceedings of the First National Symposium on Radioecology, Fort Collins, Colorado, 1961, pp. 485–495. Reinhold, New York (1963)Google Scholar
  12. 12.
    Basu, S. N., R. G. Bose, and J. P. Bhattacharyya: Some physiological studies on a copper tolerantPenicillium species. J. Sci. Ind. Res.14, 46–53 (1955)Google Scholar
  13. 13.
    Benes, P., E. T. Gjessing, and E. Steinnes: Interactions between humus and trace elements in fresh water. Water Res.10, 711–716 (1976)CrossRefGoogle Scholar
  14. 14.
    Bennett, H. D.: Algae in relation to mine water. Castanea34, 306–328 (1969)Google Scholar
  15. 15.
    Bowen, H. J. M.:Trace Elements in Biochemistry. Academic Press, New York (1966)Google Scholar
  16. 16.
    Broda, E.: Uptake of heavy cationic trace elements by microorganisms. Annu. Microbiol. Enzymol.22, 93–108 (1972)Google Scholar
  17. 17.
    Brunker, R. L., and T. L. Bott: Reduction of mercury to the elemental state by a yeast. Appl. Microbiol.27, 870–873 (1974)PubMedGoogle Scholar
  18. 18.
    Bucheder, F., and E. Broda: Energy-dependent zinc transport byEscherichia coli. Eur. J. Biochem.45, 555–559 (1974)CrossRefPubMedGoogle Scholar
  19. 19.
    Buckman, H. O., and N. C. Brady:The Nature and Properties of Soils. Macmillan, London (1969)Google Scholar
  20. 20.
    Carpenter, K. E.: A study of the fauna of rivers polluted by lead mining in the Aberystwyth district of Cardiganshire. Ann. Appl. Biol.11, 1–23 (1924)Google Scholar
  21. 21.
    Chopra, I.: Decreased uptake of cadmium by a resistant strain ofStaphylococcus aureus. J. Gen. Microbiol.63, 265–267 (1971)Google Scholar
  22. 22.
    Chopra, I.: Mechanism of plasmid-mediated resistance to cadmium inStaphylococcus aureus, Antimicrob. Agents Chemother.7, 8–14 (1975)Google Scholar
  23. 23.
    Cole, M. A.: Lead inhibition of enzyme synthesis in soil. Appl. Environ. Microbiol.33, 262–268 (1977)PubMedGoogle Scholar
  24. 24.
    Cox, D. P., and M. Alexander: Effect of phosphate and other anions on trimethyl arsine formation byCandida humicola. Appl. Microbiol.25, 408–413 (1973).PubMedGoogle Scholar
  25. 25.
    Doyle, J. J., R. J. Marshall, and W. H. Pfander: Effects of cadmium on the growth and uptake of cadmium by microorganisms. Appl. Microbiol.29, 562–564 (1975)PubMedGoogle Scholar
  26. 26.
    Ehrlich, H. L.: Microorganisms in acid drainage from a copper mine. J. Bacteriol.86, 350–352 (1963)PubMedGoogle Scholar
  27. 27.
    Ehrlich, H. L.: Biogeochemistry of the minor elements in soil. Soil Biochem.2, 361–385 (1971)Google Scholar
  28. 28.
    Ehrlich, H. L. and S. I. Fox: Copper sulphide precipitation by yeasts from acid mine-waters. Appl. Microbiol.15, 135–139 (1967)Google Scholar
  29. 29.
    Englander, C. M., and M. E. Corden: Stimulation of mycelial growth ofEndothia parasitica by heavy metals. Appl. Microbiol.22, 1012–1016 (1971)PubMedGoogle Scholar
  30. 30.
    Ennis, M. T., and J. C. Brogan: The availability of copper from copper-humic acid complexes. Ir. J. Agric. Res.1, 35–42 (1961)Google Scholar
  31. 31.
    Failla, M. L., C. D. Benedict, and E. D. Weinberg: Accumulation and storage of zinc byCandida utilis. J Gen. Microbiol.94, 23–36 (1976)PubMedGoogle Scholar
  32. 32.
    Failla, M. L., and E. D. Weinberg: Cyclic accumulation of zinc byCandida utilis during growth in batch culture. J. Gen. Microbiol.99, 85–97 (1977)PubMedGoogle Scholar
  33. 33.
    Ferstenberg, L. B., P. M. Stokes, and B. Silverberg: An electron microscope study of copper inScenedesmus. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada C298-C300 (1975)Google Scholar
  34. 34.
    Fleming, R. W., and M. Alexander: Dimethylselenide and dimethyltellurite formation by a strain ofPenicillium. Appl. Microbiol.24, 424–429 (1972)PubMedGoogle Scholar
  35. 35.
    Fogg, G. E., and D. F. Westlake: The importance of extracellular products of algae in freshwater. Verh. Int. Verein, theor. angew, Limnol.12, 219–232 (1955)Google Scholar
  36. 36.
    Frey, S. W., W. G. Dewitt, and B. R. Bellomy: The effect of several trace metals on fermentation. Proceedings of the American Society of Brewing Chemistry, 199–205 (1967)Google Scholar
  37. 37.
    Friedman, B. A. and P. R. Dugan: Concentration and accumulation of metallic ions by the bacteriumZoogloea. Dev. Ind. Microbiol.9, 381–388 (1968)Google Scholar
  38. 38.
    Fuhrman, G. F., and A. Rothstein: The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochem. Biophys. Acta163, 325–330 (1968)PubMedGoogle Scholar
  39. 39.
    Griffiths, A. J., D. E. Hughes, and D. Thomas: Some aspects of microbial resistance to metal pollution. In M. J. Jones (Ed.):Minerals and the Environment, pp. 387–394. Institution of Mining and Metallurgy, Washington, D.C. (1975)Google Scholar
  40. 40.
    Groves, D. J., and F. E. Young: Epidemiology of antibiotic and heavy metal resistance in bacteria: resistance patterns inStaphylococci isolated from populations not known to be exposed to heavy metals. Antimicrob. Agents Chemother.7, 614–621 (1975)PubMedGoogle Scholar
  41. 41.
    Groves, D. J., H. Short, Thewaini, A. J. and F. E. Young: Epidemiology of antibiotic and heavy metal resistance in bacteria: resistance patterns inStaphylococci isolated from populations in Iraq exposed and not exposed to heavy metals or antibiotics. Antimicrob. Agents Chemother.7, 622–628 (1975)PubMedGoogle Scholar
  42. 42.
    Haavik, H. I.: On the role of bacitracin peptides in trace metal transport inBacillus licheniformis. J. Gen. Microbiol.96, 393–399 (1976)PubMedGoogle Scholar
  43. 43.
    Hamdy, M. K., and O. R. Noyes: Formation of methyl mercury by bacteria. Appl. Microbiol.30, 424–432 (1975)PubMedGoogle Scholar
  44. 44.
    Hartig, W. J.: Studies of mercury toxicity inTetrahymena pyriformis. J. Protozool.18, Suppl. 26 (1971)Google Scholar
  45. 45.
    Hassall, K.: An asymmetric respiratory response occurring when fluoride and copper ions are applied jointly toChlorella vulgaris. Physiol. Plantarum22, 304–311 (1967)Google Scholar
  46. 46.
    Hodgson, J. F.: Chemistry of the micronutrient elements in soils. Adv. Agron.15, 119–159 (1963)Google Scholar
  47. 47.
    Holm, H. W., and M. F. Cox: Transformation of elemental mercury by bacteria. Appl. Microbiol.29, 491–494 (1975)PubMedGoogle Scholar
  48. 48.
    Huey, C. W., F. E. Brinckman, W. P. Iverson, and S. O. Grim: Bacterial volatilization of cadmium. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada, C214-C216 (1975)Google Scholar
  49. 49.
    Jellinek, H., and S. Sangal: Complexation of metal ions with natural polyelectrolytes (removal and recovery of metal ions from polluted waters). Water Res.6, 305–314 (1972)CrossRefGoogle Scholar
  50. 50.
    Jensen, S., and A. Jernelov: Biological methylation of mercury in aquatic organisms. Nature223, 753–754 (1969)PubMedGoogle Scholar
  51. 51.
    Jernelov, A., and A. L. Martin: Ecological implications of metal metabolism by microorganisms. Annu. Rev. Microbiol.29, 61–77 (1975)CrossRefPubMedGoogle Scholar
  52. 52.
    Jones, H. E., P. A. Trudinger, Chambers, L. A. and N. A. Pyliotis: Metal accumulation by bacteria with particular reference to dissimilatory sulphate-reducing bacteria. Z. Allg. Mikrobiol.16, 425–435 (1976)PubMedGoogle Scholar
  53. 53.
    Jones, J. R. E.: A study of the zinc-polluted river Ystwyth in North Cardiganshire, Wales. Ann. Appl. Biol.27, 367–378 (1940)Google Scholar
  54. 54.
    Jones, J. R. E.: A further study of the zinc-polluted river Ystwyth. J. Anim. Ecol.27, 1–14 (1958)Google Scholar
  55. 55.
    Khovrytchev, M. P., C. Strunk, E. Schuhmann, S. A. Lirova, and I. L. Rabotnova: Einflub des Cu2+-ionen auf den morphologischen, cytologischen und physiologischen Zustand vonCandida utilis-Zellen bei Kontinuierlicher kultivierung. Z. Allg. Mikrobiol.17, 29–45 (1977)PubMedGoogle Scholar
  56. 56.
    Kikuchi, T.: Comparison of original and secondarily developed copper resistance of yeast strains. Bot. Mag.77, 395–402 (1964)Google Scholar
  57. 57.
    Kikuchi, T.: Some aspects of relationship between hyper-hydrogen sulphide-producing activity and copper resistance of yeast. Mem. Coll. Sci., Kyoto Univ.B31, 113–124 (1964)Google Scholar
  58. 58.
    Kikuchi, T.: Studies on the pathway of sulphide production in a copper-adapted yeast. Plant Cell Physiol.6, 195–210 (1965)Google Scholar
  59. 59.
    Komura, I., and K. Izaki: Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains ofEscherchia coli. J. Biochem.70, 885–893 (1971)PubMedGoogle Scholar
  60. 60.
    Kondo, I., T. Ishikawa, and H. Nakahara: Mercury and cadmium resistances mediated by the penicillinase plasmid inStaphylococcus aureus. J. Bacteriol.117, 1–4 (1974)PubMedGoogle Scholar
  61. 61.
    Laborey, F., and J. Lavollay: Sur l'antitoxicite du calcium et du magnesium a l'egard du cadmium, dans la croissance d'Aspergillus niger. C.R. Acad. Sci. [D] (Paris)284, 639–642 (1977)Google Scholar
  62. 62.
    Lawrence, A. W., and P. L. McCarty: The role of sulphide in preventing metal toxicity in anaerobic treatment. J. Water Pollut. Control Fed.37, 392–406 (1965)Google Scholar
  63. 63.
    Lindegren, C. C.: The mitochondria in intoxication and detoxication. Physiol. Chem. Phys.3, 499–500 (1971)Google Scholar
  64. 64.
    Lindegren, C. C., P. M. Bemiller, K.-C. Liu, and G. Lindegren: Staining yeast cells for electron microscopy by growth in copper containing nutrient broth. Antonie van Leeuwenhoek38, 17–26 (1972)PubMedGoogle Scholar
  65. 65.
    Lindegren, C. C., and G. Lindegren: Oxidative detoxification of thallium in the yeast mitochondria. Antonie van Leeuwenhoek39, 351–353 (1973)PubMedGoogle Scholar
  66. 66.
    MacLeod, R. A., S. C. Kuo, and R. Gelinas: Metabolic injury to bacteria. II. Metabolic injury induced by distilled water or copper in the plating diluent. J. Bacteriol.93, 961–969 (1967)PubMedGoogle Scholar
  67. 67.
    Magos, L., A. A. Tuffery, and T. W. Clarkson: Volatilization of mercury by bacteria. Br. J. Ind. Med.21, 294–298 (1964)PubMedGoogle Scholar
  68. 68.
    Manning, H. L., and T. M. Cooke: Physiology of acidophilic bacteria of acid mine water. Completion Report A-016-Md, Water Resources Research Center, University of Maryland, College Park (1972)Google Scholar
  69. 69.
    McDermott, G. N., W. A. Moore, M. A. Post, and M. B. Ettinger: Effects of copper on aerobic biological sewage treatment. J. Water Pollut. Control Fed.35, 227–241 (1963)Google Scholar
  70. 70.
    Milanovich, F., D. Wilson, and Y. Yeh: The detoxifying effect of yellow substance onEscherichia coli in media containing copper. Nature253, 460–461 (1975)CrossRefPubMedGoogle Scholar
  71. 71.
    Murray, A. D., and D. K. Kidby: Sub-cellular location of mercury in yeast grown in the presence of mercuric chloride. J. Gen. Microbiol.86, 66–74 (1975)PubMedGoogle Scholar
  72. 72.
    Naiki, N.: Studies on the adaption of yeast to copper. XVIII. Copper binding binding sulphur substances of the copper-resistant substrain. Mem. Coll. Sci. Kyoto Univ.B24, 243–248 (1957)Google Scholar
  73. 73.
    Nakahata, H., T. Ishikawa, Y. Sarai, I. Kondo, H. Kozukue, and S. Silver: Linkage of mercury, cadmium and arsenate and drug resistance in clinical isolates ofPseudomonas aeruginosa. Appl. Environ. Microbiol.33, 975–976 (1977)PubMedGoogle Scholar
  74. 74.
    Nelson, J. D., W. Blair, F. E. Brinckman, R. R. Colwell, and W. P. Iverson: Biodegradation of phenylmercuric acetate by mercury resistant bacteria. Appl. Microbiol.26, 231–326 (1973)PubMedGoogle Scholar
  75. 75.
    Norris, P. R., and D. P. Kelly: Accumulation of cadmium and cobalt bySaccharomyces cerevisiae. J. Gen. Microbiol.99, 317–324 (1977)Google Scholar
  76. 76.
    Norris, P. R., W. K. Man, M. N. Hughes, and D. P. Kelly: Toxicity and accumulation of thallium in bacteria and yeast. Arch. Microbiol.110, 279–286 (1976)CrossRefPubMedGoogle Scholar
  77. 77.
    Novick, R. P.: Extrachromosomal inheritance in bacteria. Bacteriol. Rev.33, 210–263 (1969)PubMedGoogle Scholar
  78. 78.
    Novick, R. P., and C. Roth: Plasmid-linked resistance to inorganic salts inStaphylococcus aureus. J. Bacteriol.95, 1335–1342 (1968)PubMedGoogle Scholar
  79. 79.
    Oura, E., and H. Suomalainen: Yeast nutrition and solute uptake. In A. H. Rose and J. S. Harrison (Eds.):The Yeasts, Vol. 2, pp. 3–74. Academic Press, London (1971)Google Scholar
  80. 80.
    Passow, H., A. Rothstein, and T. W. Clarkson: The general pharmacology of heavy metals. Pharmacol. Rev.13, 185–224 (1961)PubMedGoogle Scholar
  81. 81.
    Paton, W. H. N., and K. Budd: Zinc uptake inNeocosmospora vasinfecta. J. Gen. Microbiol.72, 173–184 (1972)Google Scholar
  82. 82.
    Pickett, A. W., and A. C. R. Dean: Cadmium and zinc sensitivity and tolerance inKlebsiella (Aerobacter) aerogenes. Microbiology15, 79–91 (1976)Google Scholar
  83. 83.
    Ramamoorthy, S., and D. J. Kushner: Binding of heavy metal ions by river water. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada D19–D21 (1975)Google Scholar
  84. 84.
    Ramamoorthy, S., and D. J. Kushner: Binding of mercuric and other heavy metal ions by microbial growth media. Microbial Ecol.2, 162–176 (1975)CrossRefGoogle Scholar
  85. 85.
    Reese, M. J.: The microflora of the non-calcareous streams Rheidol and Melindwr with special reference to water pollution from lead mines in Cardiganshire. J. Ecol.25, 385–407 (1937)Google Scholar
  86. 86.
    Rogers, R. D.: Methylation of mercury in the terrestial environment. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada C218–C219 (1975)Google Scholar
  87. 87.
    Ross, I.S.: Some effects of heavy metals on fungal cells. Trans. Br. Mycol. Soc.64, 175–193 (1975)Google Scholar
  88. 88.
    Rothstein, A., and A. D. Hayes: The relationship of the cell surface to metabolism. XIII. The cation binding properties of the yeast cell surface. Arch. Biochem. Biophys.63, 87–99 (1956)CrossRefPubMedGoogle Scholar
  89. 89.
    Sadler, W. R., and P. A. Trudinger: The inhibition of microorganisms by heavy metals. Mineral Dep.2, 158–168 (1967)Google Scholar
  90. 90.
    Saxena, J., and P. H. Howard: Environmental transformation of alkylated and inorganic forms of certain metals. Adv. Appl. Microbiol.21, 185–227 (1977)PubMedGoogle Scholar
  91. 91.
    Schottel, J., A. Mandal, D. Clark, and S. Silver: Volatization of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature251, 335–337 (1974)CrossRefPubMedGoogle Scholar
  92. 92.
    Silver, S., J. Schottel, and A. Weiss: Bacterial resistance to toxic metals determined by extrachromosomal R-factors. In J. M. Sharpley and A. M. Kaplan (Eds.):Proceedings of the Third International Biodegradation Symposium, pp. 899–917. Applied Science Publishers, London (1976)Google Scholar
  93. 93.
    Singh, A., and F. Sherman: Association of methionine requirement with methyl mercury resistant mutants of yeast. Nature247, 227–229 (1974)CrossRefPubMedGoogle Scholar
  94. 94.
    Singh, A., and F. Sherman: Characteristics and relationships of mercury resistant mutants and methionine auxotrophs of yeast. J. Bacteriol.118, 911–918 (1974)PubMedGoogle Scholar
  95. 95.
    Smith, K., and R. P. Novick: Genetic studies on plasmid-linked cadmium resistance inStaphylococcus aureus. J. Bacteriol.112, 761–772 (1972)PubMedGoogle Scholar
  96. 96.
    Spangler, W. J., J. L. Spigarelli, J. M. Rose, R. S. Flippin, and H. H. Miller: Degradation of methylmercury by bacteria isolated from environmental samples. Appl. Microbiol.25, 488–493 (1973)PubMedGoogle Scholar
  97. 97.
    Starkey, R. L., and S. A. Waksman: Fungi tolerant to extreme acidity and high concentrations of copper sulphate. J. Bacteriol.45, 509–519 (1943)Google Scholar
  98. 98.
    Steemann Nielsen, E., and L. Kamp-Nielsen: Influence of deleterious concentrations of copper on the growth ofChlorella pyrenoidosa. Physiol. Plantarum22, 1121–1133 (1970)Google Scholar
  99. 99.
    Steemann Nielsen, E., and S. Wium-Andersen: Copper ions as poison in the sea and in freshwater. Mar. Biol.6, 93–97 (1970)CrossRefGoogle Scholar
  100. 100.
    Stevenson, F. J.: Binding of metal ions by humic acids. In J. O. Nriagu (Ed.):Environmental Biogeochemistry, Vol. 2, pp. 519–540. Ann Arbor Science, Ann Arbor, Mich. (1976)Google Scholar
  101. 101.
    Stutzenberger, F. J., and E. O. Bennett: Sensitivity of mixed populations ofStaphylococcus aureus andEscherichia coli to mercurials. Appl. Microbiol.13, 570–574 (1965)PubMedGoogle Scholar
  102. 102.
    Summers, A. O., and E. Lewis: Volatilization of mercuric chloride by mercury-resistant plasmid-bearing strains ofEscherichia coli, Staphylococcus aureus andPseudomonas aeruginosa. J. Bacteriol.113, 1070–1072 (1973)PubMedGoogle Scholar
  103. 103.
    Summers, A. O., and S. Silver: Mercury resistance in a plasmid bearing strain ofEscherichia coli. J. Bacteriol.112, 1228–1236 (1973)Google Scholar
  104. 104.
    Tabillion, R., and H. Kaltwasser: Energy-dependent63Ni-uptake byAlcaligenes eutrophus strains H1 and H16. Arch. Microbiol.113, 145–151 (1977)CrossRefPubMedGoogle Scholar
  105. 105.
    Temple, K. L., and N. W. Le Roux: Syngenesis of sulphide ores: desorption of adsorbed metal ions and their precipitation as sulphides. Econ. Geol.59, 647–655 (1964)Google Scholar
  106. 106.
    Tonomura, K., K. Maeda, and F. Futai: Studies on the action of mercury-resistant microorganisms on mercurials. II. The vaporization of mercurials stimulated by mercury-resistant bacterium. J. Ferment. Technol.46, 685–692 (1968)Google Scholar
  107. 107.
    Tuovinen, O. H., S. I. Niemela, and H. G. Gyllenberg: Tolerance ofThiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek37, 489–496 (1971)PubMedGoogle Scholar
  108. 108.
    Tynecka, Z., J. Zajac, and Z. Gos: Plasmid dependent impermeability barrier to cadmium ions inStaphylococcus aureus. Acta Microbiol. Polon.7, 11–20 (1975)Google Scholar
  109. 109.
    Vaituzis, Z., J. D. Nelson, L. W. Wan, and R. R. Colwell: Effects of mercuric chloride on growth and morphology of selected strains of mercury-resistant bacteria. Appl. Microbiol.29, 275–286 (1975)PubMedGoogle Scholar
  110. 110.
    Venkateswerlu, G., and K. S. Sastry: The mechanism of uptake of cobalt ions byNeurospora crassa. Biochem. J.118, 497–503 (1970)PubMedGoogle Scholar
  111. 111.
    Vonk, J. W., and A. K. Sijpesteijn: Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Antonie van Leeuwenhoek39, 505–513 (1973)PubMedGoogle Scholar
  112. 112.
    Walker, J. D., and R. R. Colwell: Mercury-resistant bacteria and petroleum degradation. Appl. Microbiol.27, 285–287 (1974)PubMedGoogle Scholar
  113. 113.
    White, J., and D. J. Munns: Inhibitory effect of common elements towards yeast growth. J. Inst. Brewing57, 175–179 (1951)Google Scholar
  114. 114.
    Whitton, B. A., and P. J. Say: Heavy metals. In B. A. Whitton (Ed.):River Ecology, pp. 286–312. Blackwell Scientific Publications, Oxford (1975)Google Scholar
  115. 115.
    Williams, J. I., and G. J. F. Pugh: Resistance ofChrysosporum pannorum to an organomercury fungicide. Trans. Br. Mycol. Soc.64, 255–263 (1974)Google Scholar
  116. 116.
    Wong, P. T. S., Y. K. Chau, P. L. Luxon, and B. Silverberg: Methylation of lead and selenium in the environment. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada C220-C221 (1975)Google Scholar
  117. 117.
    Young, R. G., and D. J. Lisk: Effect of copper and silver ions on algae. J. Water Pollut. Control Fed.44, 1643–1647 (1972)Google Scholar
  118. 118.
    Zajic, J. E.:Microbiol Biogeochemistry. Academic Press, New York (1969)Google Scholar
  119. 119.
    Zimmerman, L.: Toxicity of copper and ascorbic acid toSerratia marcescens. J. Bacteriol. 1537–1542 (1966)Google Scholar
  120. 120.
    Zlochevskaya, I. V.: Toxic effects of a lead complex with DL-cysteine onAspergillus niger. Microbiology37, 709–714 (1968)Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • Geoffrey M. Gadd
    • 1
  • Alan J. Griffiths
    • 1
  1. 1.Department of MicrobiologyUniversity College CardiffCardiff

Personalised recommendations