Microbial Ecology

, Volume 9, Issue 1, pp 57–64 | Cite as

Electron microscope study of the interaction of epibiontic bacteria withChromatium minus in natural habitats

  • I. Esteve
  • R. Guerrero
  • E. Montesinos
  • C. Abellà
Article

Abstract

Epibiontic cells on the surface of the photosynthetic purple sulfur bacteriumChromatium minus, collected several times during the year from 3 different Spanish lakes, were examined using scanning and transmission electron microscopy. The cells attached to theC. minus cell wall by an electron-dense pad, but did not enter the cell. They were ovoidal (about 0.6Μm wide) when free, and slightly curved rods (0.3×0.6Μm) when undergoing division. Division only occurred when cells remained attached toChromatium. A septum was formed, resulting in 2 or 3 curved rods surrounded by a common capsule. Detached daughter cells became ovoidal.

The host ultrastructure changed as a result of epibiontic attachment, showing symptoms of cellular degradation. Simultaneously, plaques could be detected on cell lawns formed spontaneously upon cell sedimentation from field samples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeliovich A, Kaplan S (1974) Bacteriophages ofRhodopseudomonas sphaeroides: Isolation and characterization of aRhodopseudomonas sphaeroides bacteriophage. J Virol 13:1392–1399PubMedGoogle Scholar
  2. 2.
    Anderson TF (1951) Techniques for the preservation of three-dimensional structure in preparing specimens for the electron microscope. Trans NY Acad Sci 13:130–135Google Scholar
  3. 3.
    Burnham JC, Hashimoto T, Conti SF (1968) Electron microscopic observations on the penetration ofBdellovibrio bacteriovorus into Gram-negative bacterial hosts. J Bacteriol 96:1366–1381PubMedGoogle Scholar
  4. 4.
    Coder DM, Starr MP (1978) Antagonistic association of the chlorellavorus bacterium (“Bdellovibrio” chlorellavorus) withChlorella vulgaris. Current Microbiology 1:59–64Google Scholar
  5. 5.
    Freund-Molbert E, Drews G, Bosecker K, Schubel B (1968) Morphologie und Wirtskreis eines neu isoliertenRhodopseudomonas palustris-phagen. Arch Mikrobiol 64:1–8PubMedGoogle Scholar
  6. 6.
    Gromov BV, Mamkayeva KA (1972) Electron microscopic examination ofBdellovibrio chlorellavorus parasitism on cells of the green algaChlorella vulgaris. Tsitologiya 14:256–260 (In Russian)Google Scholar
  7. 7.
    Gromov BV, Mamkayeva KA (1980) Proposal of a new genusVampirovibrio for chlorellavorus bacteria previously assigned toBdellovibrio. Mikrobiologya 49:165–167 (In Russian)Google Scholar
  8. 8.
    Guerrero R, Montesinos E, Esteve I, Abellà C (1980) Physiological adaptation and growth of purple and green sulfur bacteria in a meromictic lake (Vilar) as compared to a holomictic lake (Sisó). In: Dokulil M, Metz H, Jewson D (eds) Shallow lakes. Developments in hydrobiology, Vol 3. W Junk Publishers, The Hague, pp 161–171Google Scholar
  9. 9.
    Huang JC, Starr MP (1973) Possible enzymatic bases of bacteriolysis by bdellovibrios. Arch Microbiol 89:147–167Google Scholar
  10. 10.
    Kessel M, Shilo M (1976) Relationship ofBdellovibrio elongation and fission to host cell size. J Bacteriol 128:477–480PubMedGoogle Scholar
  11. 11.
    Larkin JM (1980) Isolation ofThiothrix in pure culture and observation of a filamentous epiphyte onThiothrix. Current Microbiology 4:155–158Google Scholar
  12. 12.
    Paerl HW (1976) Specific associations of the bluegreen algaeAnabaena andAphanizomenon with bacteria in freshwater blooms. J Phycol 12:431–435Google Scholar
  13. 13.
    Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212PubMedGoogle Scholar
  14. 14.
    Rittenberg SC, Shilo M (1970) Early host damage in the infection cycle ofBdellovibrio bacteriovorus. J Bacteriol 102:149–160PubMedGoogle Scholar
  15. 15.
    Ryter A, Kellenberger E, Sechaud J (1958) Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol 4:671–682PubMedGoogle Scholar
  16. 16.
    Schmidt LS, Men HC, Gest H (1974) Bioenergetic aspects of bacteriophage replication in the photosynthetic bacteriumRhodopseudomonas capsulata. Arch Biochem Biophys 165: 229–239PubMedGoogle Scholar
  17. 17.
    Stolp H, Petzold H (1962) Untersuchungen über einen obligat parasitischen Microorganismus mit lytischer AktivitÄt fürPseudomonas-Bakterien. Phytopathol Zeitschrift 45:364–390Google Scholar
  18. 18.
    Stolp H (1973) The bdellovibrios: bacterial parasites of bacteria. Annu Rev Phytopathol 11:53–76Google Scholar
  19. 19.
    Tudor JJ, Conti SF (1977) Characterization of bdellocysts ofBdellovibrio sp. J Bacteriol 131:314–322PubMedGoogle Scholar
  20. 20.
    Tudor JJ, Conti SF (1977) Ultrastructural changes during encystment and germination ofBdellovibrio sp. J Bacteriol 131:323–330PubMedGoogle Scholar
  21. 21.
    Van Gemerden H (1980) Survival ofChromatium vinosum at low light intensities. Arch Microbiol 125:115–121Google Scholar
  22. 22.
    Wall JD, Wearer PF, Gest H (1975) Gene transfer agents, bacteriophages, and bacteriocins ofRhodopseudomonas capsulata. Arch Microbiol 105:217–222PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • I. Esteve
    • 1
  • R. Guerrero
    • 1
  • E. Montesinos
    • 1
  • C. Abellà
    • 1
  1. 1.Department of Microbiology and Institute for Fundamental BiologyAutonomous University of BarcelonaBellaterraSpain

Personalised recommendations