Microbial Ecology

, Volume 4, Issue 1, pp 9–25 | Cite as

Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters

  • Jon H. Tuttle
  • Holger W. Jannasch


The effect of thiosulfate on dark assimilation of carbon dioxide in shallow marine environments was investigated in order to explain the recent discovery of bacterial thiosulfate oxidation in aerobic, open ocean seawater. The results demonstrate that the potential exists for microbial thiosulfate oxidation to increase both dark assimilation of carbon dioxide and the utilization of organic compounds in the sea. Thiosulfate-stimulated microbial activity may be caused not only by chemoautotrophic sulfur bacteria, but also by heterotrophic species which oxidize thiosulfate to tetrathionate. Measurements of dark assimilation of carbon dioxide made at different incubation times indicate that great care must be taken both in experimental procedure and in interpretation of results obtained with the dark assimilation technique.


Carbon Dioxide Organic Compound Assimilation Incubation Time Nature Conservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albright, L. J.: The influence of hydrostatic pressure upon biochemical activities of heterotrophic bacteria.Can. J. Microbiol. 21, 1406–1412 (1975)PubMedGoogle Scholar
  2. 2.
    Barnes, H.: Apparatus and Methods of Oceanography, Part One: Chemical. Interscience Publishers, Inc., New York (1959)Google Scholar
  3. 3.
    Belly, R. T., and T. D. Brock: Ecology of iron-oxidizing bacteria in pyritic materials associated with coal.J. Bacteriol. 117, 726–732 (1974)PubMedGoogle Scholar
  4. 4.
    Eppley, R. W., and J. H. Sharp: Photosynthetic measurements in the central North Pacific: the dark loss of carbon in 24-h incubations.Limnol. Oceanogr. 20, 981–987 (1976)Google Scholar
  5. 5.
    Fliermans, C. B., and T. D. Brock: Ecology of sulfur-oxidizing bacteria in hot acid soils.J. Bacteriol. 111, 343–350 (1972)PubMedGoogle Scholar
  6. 6.
    Hicks, S. E., and F. G. Carey: Glucose determination in natural water.Limnol. Oceanogr. 13, 361–363 (1968)Google Scholar
  7. 7.
    Kelley, D. P., L. A. Chambers, and P. A. Trudinger: Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate.Anal. Chem. 41, 898–901 (1970)CrossRefGoogle Scholar
  8. 8.
    Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall: Protein measurement with the folin phenol reagent.J. Biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  9. 9.
    Nalewajko, C., T. G. Dunstall, and H. Shear: Kinetics of extracellular release in axenic algae and in mixed algal-bacterial cultures: significance in estimation of total (gross) phytoplankton excretion rates.J. Phycol. 12, 1–5 (1976)Google Scholar
  10. 10.
    Roy, A. B., and P. A. Trudinger: The Biochemistry of Inorganic Compounds of Sulphur. Cambridge University Press, London (1970)Google Scholar
  11. 11.
    Santer, M., J. Boyer, and U. Santer:Thiobacillus novellus. 1. Growth on organic and inorganic media.J. Bacteriol. 78, 197–202 (1959)CrossRefPubMedGoogle Scholar
  12. 12.
    Seki, H.: Relationship between production and mineralization of organic matter in Aburatsubo Inlet, Japan.J. Fish. Res. Bd. Can. 25, 625–637 (1968)Google Scholar
  13. 13.
    Sen Gupta, R., and H. W. Jannasch: Photosynthetic production and dark-assimilation of CO2 in the Black Sea.Int. Rev. Ges. Hydrobiol. 58, 625–632 (1973)Google Scholar
  14. 14.
    Steeman Nielsen, E.: Dark fixation of CO2 and measurements of organic productivity with remarks on chemo-synthesis.Physiol. Plant. 13, 348–357 (1960)Google Scholar
  15. 15.
    Sorokin, Yu. I.: A quantitative study of the microflora in the Central Pacific Ocean.J. Cons. Perm. Int. Explor. Mer. 29, 25–40 (1964)Google Scholar
  16. 16.
    Sorokin, Yu. I.: On the primary production and bacterial activities in the Black Sea.J. Cons. Perm. Int. Explor. Mer. 29, 41–60 (1964)Google Scholar
  17. 17.
    Sorokin, Yu. I.: On the trophic role of chemosynthesis in water bodies.Int. Rev. Ges. Hydrobiol. 49, 307–324 (1964)Google Scholar
  18. 18.
    Sorokin, Yu. I.: Experimental investigation of the rate and mechanism of oxidation of hydrogen sulfide in the Black Sea using S-35.Oceanology 10, 37–46 (1970)Google Scholar
  19. 19.
    Sorokin, Yu. I.: On the role of bacteria in productivity of tropical oceanic waters.Int. Rev. Ges. Hydrobiol. 56, 1–48 (1971)Google Scholar
  20. 20.
    Sorokin, Yu. I.: The bacterial population and the process of hydrogen sulfide oxidation in the Black Sea.J. Cons. Perm. Int. Explor. Mer. 34, 423–454 (1972)Google Scholar
  21. 21.
    Taguchi, S., and T. Platt: Assimilation of14CO2 in the dark compared to phytoplankton production in a small coastal inlet.Estuar. Costal Mar. Sci. (in press)Google Scholar
  22. 22.
    Tuttle, J. H., P. E. Holmes, and H. W. Jannasch: Growth rate stimulation of marine pseudomonads by thiosulfate.Arch. Microbiol. 99, 1–14 (1974)CrossRefPubMedGoogle Scholar
  23. 23.
    Tuttle, J. H., P. E. Holmes, and H. W. Jannasch: Growth stimulation by thiosulfate in marine pseudomonads. Abstracts of the Annual Meeting of the American Society for Microbiology, p. 59 (1974)Google Scholar
  24. 24.
    Tuttle, J. H., and H. W. Jannasch: Occurrence and types of thiobacillus-like bacteria in the sea.Limnol. Oceanogr. 17, 532–543 (1972)Google Scholar
  25. 25.
    Tuttle, J. H., and H. W. Jannasch: Sulfide and thiosulfate-oxidizing bacteria in anoxic marine basins.Mar. Biol. 20, 64–70 (1973)CrossRefGoogle Scholar
  26. 26.
    Tuttle, J. H., and H. W. Jannasch: Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria.J. Bacteriol. 115, 732–737 (1973)PubMedGoogle Scholar
  27. 27.
    Tuttle, J. H., and H. W. Jannasch: Microbial utilization of thiosulfate in the deep sea.Limnol. Oceanogr. 21, 697–701 (1976)Google Scholar
  28. 28.
    Vishniac, W. V., and M. Santer: The thiobacilli.Bacteriol. Rev. 21, 195–214 (1957)PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1977

Authors and Affiliations

  • Jon H. Tuttle
    • 1
    • 2
  • Holger W. Jannasch
    • 1
    • 2
  1. 1.Woods Hole Oceanographic InstitutionWoods Hole
  2. 2.Department of BiologyThe University of Texas at ArlingtonArlington

Personalised recommendations