Calcified Tissue Research

, Volume 22, Issue 1, pp 49–65 | Cite as

Ultrastructural studies on the formation of the periostracum inHelix aspersa (Mollusca)

  • A. S. M. Saleuddin
Original Papers


The ultrastructure of the periostracal gland inHelix aspersa and the sequence of formation of the periostracum is described. The periostracal units which measure about 9–12 nm wide and 0.4–0.6 μm long are first detected in the Golgi cisternae. The cisternae containing the unit(s) eventually pinch off from the rest of the Golgi. Microtubules are seen in the space separating the nascent secretory inclusion and the Golgi. Cross-bridges are seen between the microtubules and the secretory inclusions, suggesting that the microtubules are involved in the transport of nascent inclusions away from the site of synthesis. Many periostracal units unite to form periostracal sheets. The mature inclusions containing periostracal sheets migrate to the apical part of the cell where they fuse with the lysosomes before being extruded externally in the lumen of the gland. Perhaps the lysosomal enzymes somehow modify the periostracal units before their extrusion or digest the excess periostracal units. The periostracal sheets released in the lumen disperse randomly to produce a fibrous sheet, which is nonuniform in texture at first but is entirely homogeneous by the time the periostracum is secreted outside.

Key words

Periostracum Mantle Golgi system Microtubules Lysosomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. D.: Evidence for form linkages between microtubules and membranebound vesicles. J. Cell Biol.64, 497–503 (1975)CrossRefPubMedGoogle Scholar
  2. Beedham, G. E.: Observations on the non-calcareous components of the shell of lamelli-branchs. Quart. J. micr. Sci.99, 341–357 (1958)Google Scholar
  3. Bevelander, G., Nakahara, H.: An electron microscopic study of the formation of the periostracum ofMacrocallista maculata. Calcif. Tiss. Res.1, 55–67 (1967)CrossRefGoogle Scholar
  4. Bevelander, G., Nakahara, H.: An electron microscopic study of the formation and structure of the periostracum of a Gastropod,Littorina littorea. Calcif. Tiss. Res.5, 1–12 (1970)CrossRefGoogle Scholar
  5. Bikle D., Tilney, L. G., Porter, K. R.: Microtubules and pigment migration in the melanophores ofFundulus heteroclitus L. Protoplasma61, 322–345 (1966)CrossRefGoogle Scholar
  6. Brown, C.HH.: Some structural proteins ofMytilus edulis. Quart. J. micr. Sci.,93, 487–502 (1952).Google Scholar
  7. Chan, Joyce F. Y., Saleuddin, A. S. M.: Acid phosphatase in the mantle of the shell regenerating snailHelisoma duryi duryi. Calcif. Tiss. Res.15, 213–220 (1974)Google Scholar
  8. Etherton, J. E., Botham, C. M.: Factors affecting lead capture methods for the fine localization of rat lung acid phosphatase. Histochem. J.2, 507–519 (1970)CrossRefPubMedGoogle Scholar
  9. Fernandez, H. L., Burton, P. R., Samson, F. E.: Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons. J. Cell Biol.51, 176–192 (1971)CrossRefPubMedGoogle Scholar
  10. Filament-Durand, J., Dustin, P.: Studies on the transport of secretory granules in the magnocellular hypothalamic neurons. I. Action of colchicine on axonal flow and neurotubules in the paraventricular nuclei. Z. Zellforsch.130, 440–454 (1972)CrossRefPubMedGoogle Scholar
  11. Franke, W. W.: Cytoplasmic microtubules linked to endoplasmic reticulum with cross-bridges. Exp. Cell Res.66, 486–489 (1971)CrossRefPubMedGoogle Scholar
  12. Freed, J. J., Lebowitz, M. M.: The association of a class of saltatory movements with microtubules in cultured cells. J. Cell Biol.45, 334–354 (1970)CrossRefPubMedGoogle Scholar
  13. Greenspan, J. S., Blackwood, H. J. J.: Histochemical studies of the chondrocyte function in the cartilage mandibular condyle of the rat. In: Calcified Tissue 1965. Proc. 3rd European Symposium on Calcified Tissue (H. Fleisch, H. J. J. Blackwood, M. Owen, eds), pp. 40–44. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  14. Grimstone, A. V., Cleveland, L. R.: The fine structure and function of the contractile axostyles of certain flagellates. J. Cell Biol.24, 387–400 (1965)CrossRefPubMedGoogle Scholar
  15. Hepler, P. K., McIntosh, J., Cleland, S.: Intermicrotubule bridges in mitotic spindle apparatus. J. Cell Biol.45, 483–444 (1970)CrossRefGoogle Scholar
  16. Hökfelt, T., Dahlstrom, A.: Effects of two mitosis inhibitors (colchicine and vinblastine) on the distribution and axonal transport of non-adrenaline storage particles, studied by fluorescence and electron microscopy. Z. Zellforsch.119, 460–482 (1971)CrossRefPubMedGoogle Scholar
  17. Holmes, K. V., Choppin, P.W.: On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia. J. Cell Biol.39, 526–543 (1968)CrossRefPubMedGoogle Scholar
  18. Kapur, S. P., Gibson, M. A.: A histological study of the development of the mantle edge and shell inHelisoma duryi eudiscus (Pilsbry). Canad. J. Zool.45, 1169–1181 (1967)Google Scholar
  19. Kawaguti, S., Ikemoto, N.: Electron microscopy of the mantle of a bivalve,Fabulina nitidula. Biol. J. Okayama Univ.8, 21–30 (1962)Google Scholar
  20. Kniprath, E.: Die Feinstruktur des Drüsenpolsters vonLymnaea stagnalis. Biomineralization3, 1–11 (1971)Google Scholar
  21. Kniprath, E.: Formation and structure of the periostracum inLymnaea stagnalis. Calcif. Tiss. Res.9, 260–271 (1972)Google Scholar
  22. Matsuzawa, T., Anderson, H. C.: Phosphatases of epiphysial cartilage studied by electron microscopic cytochemical methods. J. Histochem. Cytochem.19, 801–808 (1971)PubMedGoogle Scholar
  23. Meenaskshi, V. R., Hare, P. E., Watabe, N., Wilbur, K. M.: The chemical composition of the periostracum of the molluscan shell. Comp. Biochem. Physiol.29, 611–620 (1969)CrossRefGoogle Scholar
  24. Messier, P.E., Auclair, C.: Inhibition of nuclear migration in the absence of microtubules in chick embryo. J. Embryol. exp. Morph.30, 661–679 (1973)PubMedGoogle Scholar
  25. Moynier de Villepoix, R.: Recherches sur la formation et l'accroissement de la coquille des mollusques. J. Anat. (Paris)28, 461–674 (1892)Google Scholar
  26. Neff, J. M.: Ultrastructural studies of periostracum formation in the hard shelled clamMercenaria mercenaria (L.). Tiss. Cell4, 311–326 (1972)Google Scholar
  27. Robison, W. G., Jr., Charlton, J. S.: Microtubules, microfilaments, and pigment movement in the chromatophores ofPalaemonetes vulgaris (Crustacea). J. exp. Zool.186, 279–288 (1973)CrossRefPubMedGoogle Scholar
  28. Saleuddin, A. S. M.: Electron microscopic study of the mantle of normal and regeneratingHelix. Canad. J. Zool.48, 409–416 (1970)Google Scholar
  29. Saleuddin, A. S. M.: An electron microscopic study of the formation and structure of the periostracum inAstarte (Bivalvia). Canad. J. Zool.52, 1463–1471 (1974)Google Scholar
  30. Saleuddin, A. S. M.: An electron microscopic study on the formation of the periostracum inHelisoma (Mollusca). Calcif. Tiss. Res.18, 297–310 (1975)Google Scholar
  31. Tilney, L. G., Porter, K.R.: Studies on microtubules in helizoa. I. The fine structure ofActonosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma60, 317–344 (1965)CrossRefPubMedGoogle Scholar
  32. Timmermans, L.P.M.: Studies on shell formation in molluscs. Netherl. J. Zool.19, 417–523 (1969)Google Scholar
  33. Wagner, R.C., Rosenberg, M.D.: Endocytosis in Chang liver cells: the role of microtubules in vacuole orientation and movement. Cytobiologie7, 20–27 (1973)Google Scholar
  34. Wikswo, M. A., Novales, R. R.: Effect of colchicine on microtubules in the melanophores ofFundulus heteroclitus. J. Ultrastruct. Res.41, 189–201 (1972)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • A. S. M. Saleuddin
    • 1
  1. 1.Department of BiologyYork UniversityDownsviewCanada

Personalised recommendations