Calcified Tissue Research

, Volume 1, Issue 1, pp 252–272 | Cite as

Biologic significance of piezoelectricity

  • C. Andrew L. Bassett


Biologic Significance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberty, R. A.: In: The proteins, chemistry, biological activity, and methods (H. Neurath andK. A. Bailey, eds.), 1, p. 530. New York: Academic Press 1953.Google Scholar
  2. Ambrose, E. J.: In: Cell electrophoresis (E. J. Ambrose, ed.); Structure and biological properties of the cell surface. London: J. & A. Churchill, Ltd. 1965.Google Scholar
  3. Athenstaedt, H.: Ferroelektrische und piezoelektrische Eigenschaften biologisch bedeutsamer Stoffe. Naturwissenschaften13, 465–472 (1961).Google Scholar
  4. Atkinson, P. J.: Variation in trabecular structure of vertebrae with age. Calc. Tiss. Res.1, 24–32 (1967).Google Scholar
  5. Bass, L., andW. J. Moore: Electric fields in perfused nerves. Nature (Lond.)214, 393–394 (1967).Google Scholar
  6. Bassett, C. A. L.: Current concepts of bone formation. J. Bone Jt Surg.44-A, 1217–1244 (1962).Google Scholar
  7. —: In: Bone biodynamics (H. M. Frost, ed.); Environmental and cellular factors regulating osteogenesis, p. 233–244. Boston: Little, Brown and Co. 1964.Google Scholar
  8. —: Electrical effects in bone. Sci. Amer.213, 18–25 (1965).Google Scholar
  9. —: In: Third European Symposium on Calcified Tissues (H. Fleisch, H. J. J. Blackwood, andM. Owen, eds.); Electromechanical factors regulating bone architecture, p. 78–89. Berlin-Heidelberg-New York: Springer 1966a.Google Scholar
  10. —: The regulation of bone structure. Med. News (N. Y.)182, 9;183, 8 (1966b).Google Scholar
  11. —: In: Cartilage degradation and repair (C. A. L. Bassett, ed.). Washington, D. C.: National Academy of Sciences-National Research Council 1967a.Google Scholar
  12. —: In: 1968 Mc Graw-Hill Yearbook of Science and Technology; Bone. New York: Mc Graw-Hill Book Co. 1967b.Google Scholar
  13. —, andR. O. Becker: Generation of electric potentials by bone in response to mechanical stress. Science137, 1063–1064 (1962).PubMedGoogle Scholar
  14. —, andI. Herrmann: Influence of oxygen concentration and mechanical factors on differe entiation of connective tissuesin vitro. Nature (Lond.)190, 460–461 (1961).Google Scholar
  15. —,R. J. Pawluk, andR. O. Becker: Effects of electric currents on bonein vivo. Nature-(Lond.)204, 652–654 (1964).Google Scholar
  16. Bazenhov, V. A.: Piezoelectric properties of wood. Consultants Bureau, New York, 180 p. (1961).Google Scholar
  17. Becker, R. O.: The bioelectric factors in amphibian-limb regeneration. J. Bone Jt Surg.43-A, 643–656 (1961).Google Scholar
  18. Becker, R. O., andC. H. Bachman: Bioelectric effects in tissue. In: Letters to the Editor, Clin. Orthop.43, 251–254 (1965).Google Scholar
  19. —,C. A. L. Bassett, andC. H. Bachman: In: Bone biodynamics (H. Frost, ed.); Bioelectrical factors controlling bone structure, p. 209–231. Boston: Little, Brown and Co. 1964.Google Scholar
  20. —, andF. M. Brown: Photoelectric effects in human bone. Nature (Lond.)206, 1325–1328 (1965).Google Scholar
  21. —, andA. A. Marino: Electron paramagnetic resonance spectra of bone and its major components. Nature (Lond.)210, 583–588 (1966).Google Scholar
  22. —, andD. G. Murray: A method for producing cellular dedifferentiation by means of very small electrical currents. Trans. N. Y. Acad. Sci.29, 606–615 (1967).PubMedGoogle Scholar
  23. Benson, S. W., andJ. W. King, Jr.: Electrostatic aspects of physical adsorption: Implications for molecular sieves and gaseous anesthesia. Science150, 1710–1713 (1965).PubMedGoogle Scholar
  24. Bingley, M. S.: Further investigations into membrane potentials in amoebae. Exp. Cell Res.43, 1–12 (1966).PubMedGoogle Scholar
  25. Braden, M., A. G. Bairstow, I. Beider, andB. G. Ritter: Electrical and piezo-electrical properties of dental hard tissues. Nature (Lond.)212, 1565–1566 (1966).Google Scholar
  26. Brandt, P. W., andA. R. Freeman: Plasma membrane: Substructural changes correlated with electrical resistance and pinocytosis. Science155, 582–585 (1967).PubMedGoogle Scholar
  27. Cady, W. G.: Piezoelectricity, 806 p. New York: Mc Graw-Hill Book Co. 1946.Google Scholar
  28. Christiansen, J. A., C. E. Jensen, andTh. Vilstrup: Displacement potentials and bending of rod-like polyelectrolytes. Nature (Lond.)191, 484–485 (1961).Google Scholar
  29. Cieszynski, T.: Studies on the regeneration of ossal tissue II. Arch. Immunologiae et Therapie Experimentalis11, 191–209 (1963).Google Scholar
  30. Cochran, G. V. B.: Electromechanical characteristics of moist bone. Sc. D. (med.) Thesis Columbia University, New York, N. Y. (1966).Google Scholar
  31. —,R. J. Pawluk, andC. A. L. Bassett: Stress generated electric potentials in the mandible and teeth. Arch. oral Biol.12, 917–920 (1967).PubMedGoogle Scholar
  32. Curry, J. D.: Three analogies to explain the mechanical properties of bone. Biorheology2, 1–10 (1964).Google Scholar
  33. Dainora, J.: Piezoelectric properties of bone. M. Sc. Thesis, West Virginia University, Morgantown, 60 p. 1964.Google Scholar
  34. De Duve, C.: The function of intracellular hydrolases. Exp. Cell Res., Suppl.7, 169–182 (1959).Google Scholar
  35. Dietrick, J. E., G. D. Whedon, andE. Shorr: Effects of immobilization upon various metabolic and physiologic functions of normal man. Amer. J. Med.4, 3–36 (1948).Google Scholar
  36. Digby, P. S. B.: Semi-conduction and electrode processes in biological material. I. Crustacea and certain soft-bodied forms. Proc. roy. Soc. B161, 504–525 (1965).Google Scholar
  37. —: Mechanism of calcification in mammalian bone. Nature (Lond.)212, 1250–1252 (1966).Google Scholar
  38. Duchesne, J., J. Depireux, A. Bertinchamps, N. Comet, andJ. M. van der Kaa: Thermal and electrical properties of nucleic acids and proteins. Nature (Lond.)188, 405–406 (1960).Google Scholar
  39. Eanes, E. D., I. H. Gillessen, andA. S. Posner: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965).Google Scholar
  40. Eccles, J. C., andJ. C. Jaeger: The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. roy. Soc. B148, 38–56 (1958).Google Scholar
  41. Eisenman, G., J. P. Sandblom, andJ. L. Walker, Jr.: Membrane structure and ion permeation. Science155, 965–974 (1967).PubMedGoogle Scholar
  42. Epker, B. N., andH. M. Frost: Correlation of bone resorption and formation with the physiological behavior of loaded bone. J. dent. Res.44, 33–41 (1965).PubMedGoogle Scholar
  43. Elul, R.: Dependence of synaptic transmission on protein metabolism of nerve cells: A possible electrokinetic mechanism of learning? Nature (Lond.)210, 1127–1131 (1966).Google Scholar
  44. Fell, H. B.: In: Biochemistry and physiology of bone (G. H. Bourne, ed.); Skeletal development in tissue culture, p. 401–411. New York: Academic Press 1956.Google Scholar
  45. Freeman, J. R.: Dielectric properties of mineralized tissues. Trans. N. Y. Acad. Sci.29, 623–633 (1967).PubMedGoogle Scholar
  46. Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Japan10, 149–154 (1955).Google Scholar
  47. —: On the piezoelectric effect of silk fibers. J. Phys. Soc. Japan12, 1301 (1956).Google Scholar
  48. —: The piezoelectric effect in fibrous proteins. Reports on Progr. in Polymer Phys. in Japan3, 168–169 (1960) [in Japanese].Google Scholar
  49. —,M. Date, andN. Hirai: Piezoelectric effect in poly-y-methyl-L-glutamate. Nature (Lond.)211, 1079 (1966).Google Scholar
  50. —, andI. Yasuda: On the piezoelectric effect of bone. J. Phys. Soc. Japan12, 1158–1162 (1957).Google Scholar
  51. ——: Piezoelectric effects in collagen. Jap. J. appl. Phys.3, 117–121 (1964).Google Scholar
  52. Galligan, W. L., andL. D. Bertholf: Piezoelectric effect in wood. Forest Products J.12, 517–524 (1963).Google Scholar
  53. Geiser, M., andJ. Trueta: Muscle action, bone rarefaction and bone formation: An experimental study. J. Bone Jt Surg.40-B, 282–311 (1958).Google Scholar
  54. Glimcher, M. J., A. J. Hodge, andF. O. Schmitt: Macromolecular aggregation states in relation to mineralization: The collagen-hydroxyapatite system as studiedin vitro. Proc. nat. Acad. Sci. (Wash.)43, 860–867 (1957).Google Scholar
  55. Haberditzl, W.: Enzyme activity in high magnetic fields. Nature (Lond.)213, 72–73 (1967).Google Scholar
  56. Huber, F.: Piezoeffects in p-n junctions of semiconducting titanium oxide filsm. Appl. Phys. Letters2, 76–78 (1963).Google Scholar
  57. Iida, H., S. Ko, Y. Miyashita, S. Sawada, M. Maeda, H. Nagayama, A. Kawai, andS. Kitamura: On electric callus produced by an alternating current. J. Kyoto Pref. Med. Univ.60, 561–564 (1956).Google Scholar
  58. Ives, D. J. G., andG. J. Janz: Reference electrodes. London: Academic Press 1961.Google Scholar
  59. Jackson, D. S., andA. Neuberger: Observations on the isoionic and isoelectric point of acid-processed gelatin from insoluble and citrate-extracted collagen. Biochim. biophys. Acta (Amst.)26, 638–639 (1957).Google Scholar
  60. Jaffe, B.: A primer of ferroelectricity and piezoelectric ceramics. Technical Paper TP-217, Piezoelectric Division, Clevite Corp., Cleveland, 9p. 1960.Google Scholar
  61. Jahn, T. L.: Contraction of protoplasm. II. Theory: Anodal vs. cathodal in relation to calcium. J. Cell Physiol.68, 135–148 (1966).PubMedGoogle Scholar
  62. Jahn, T. L.: A possible mechanism for the effect of electrical potentials on apatite formation in bone. Clin. Orthop. (in press).Google Scholar
  63. Kahn, L. D., R. J. Carroll, andL. P. Witnauer: Some effects of electrolytes on collagen in solution. Biochim. biophys. Acta (Amst.)63, 243–254 (1962).Google Scholar
  64. Kay, M. I., R. A. Young, andA. S. Posner: Crystal structure of hydroxyapatite. Nature (Lond.)204, 1050–1052 (1964).Google Scholar
  65. Lang, S. B.: Pyroelectric effect in bone and tendon. Nature (Lond.)212, 704–705 (1966).Google Scholar
  66. Levengood, W. C.: Cytogenetic variations induced with a magnetic probe. Nature (Lond.)209, 1009–1013 (1966).Google Scholar
  67. —: Morphogenesis as influenced by locally administered magnetic fields. Biophys. J.7, 297–307 (1967).PubMedGoogle Scholar
  68. Liboff, R. L.: A biomagnetic hypothesis. Biophys. J.5, 845–853 (1965).PubMedGoogle Scholar
  69. Loewenstein, W. R.: Permeability of membrane junctions. Ann. N. Y. Acad. Sci.137, 441–472 (1966).PubMedGoogle Scholar
  70. Lubin, M.: Intracellular potassium and macromolecular synthesis in mammalian cells. Nature (Lond.)213, 451–453 (1967).Google Scholar
  71. Lucy, J. A.: Globular lipid micelles and cell membranes. J. theor. Biol.7, 360–373 (1964).Google Scholar
  72. Mack, P. B., P. A. La Chance, G. P. Vose, andF. B. Vogt: Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Amer. J. Roentgenol.100, 503–511 (1967).PubMedGoogle Scholar
  73. Marino, A. A., andR. O. Becker: Evidence for direct physical bonding between the collagen fibers and apatite crystals in bone. Nature (Lond.)213, 697–698 (1967).Google Scholar
  74. Marsh, G., andH. W. Beams:In vitro control of growing chick nerve fibers by applied electric currents. J. cell. comp. Physiol.27, 139–157 (1946).Google Scholar
  75. Minkin, C., B. Poulton, andWm. Hoover: The effect of direct current stimulation on femora of growing rabbits. (Abstract) Fed. Proc.26, No 2, 890 (1967).Google Scholar
  76. Nakai, J.: Skeletal muscle in organ culture. Exp. Cell Res.40, 307–315 (1965).PubMedGoogle Scholar
  77. Neuman, W. F.: In: Ion exchangers in organic and biochemistry (C. Caliman andT. R. E. Kressman, eds.); Bone as an ion exchange system, p. 197–212. New York: Interscience Publisher, Inc. 1957.Google Scholar
  78. Noguchi, K.: Study on dynamic callus and electric callus. J. Jap. Orthop. Surg. Soc.31, 1–24 (1957).Google Scholar
  79. Paff, G. H.: Influence of pH on growth of bone in tissue culture. Proc. Soc. exp. Biol. (N.Y.)68, 288–293 (1948).Google Scholar
  80. Paterson, D.: Crystal faults as electronic devices. New Scientist32, 31–32 (1966).Google Scholar
  81. Picton, H. D.: Some responses ofDrosophila to weak magnetic and electrostatic fields. Nature (Lond.)211, 303–304 (1966).Google Scholar
  82. Pidot, A. I., andJ. M. Diamond: Streaming potentials in a biological membrane. Nature (Lond.)201, 701–702 (1964).Google Scholar
  83. Ramachandran, G. N., andG. Kartha: Structure of collagen. Nature (Lond.)174, 269–270 (1954).Google Scholar
  84. Rinder, W., andR. Nelson: Piezojunctions: elements of a new class of semiconductor devices. Proc. IRE50, 2106 (1962).Google Scholar
  85. Rowland, R. E.: Exchangeable bone calcium. Clin. Orthop.49, 233–248 (1966).PubMedGoogle Scholar
  86. Salo, T. P.: The preparation of ichthyocol collagen by electrodeposition. Arch. Biochem.28, 68–72 (1950).PubMedGoogle Scholar
  87. Schryver, H. F. andR. B. L. Gwatkin: Effect of alkaline media on the growth of embryonic chick tibiotarsi in organ culture. Nature (Lond.)202, 822–823 (1964).Google Scholar
  88. Sedlin, E. D. A rheologic model for cortical bone. Acta orthop. scand., Suppl.83, 77p. (1965).Google Scholar
  89. Shamos, M. H., andL. S. Lavine: Physical basis for bioelectric effects in mineralized tissues. Clin. Orthop.35, 177–188 (1964).PubMedGoogle Scholar
  90. ——: Letters to the Editor. Clin. Orthop.43, 254–255 (1965).PubMedGoogle Scholar
  91. ——: Piezoelectricity as a fundamental property of biological tissues Nature (Lond.)213, 267–269 (1967).Google Scholar
  92. ——, andM. I. Shamos: Piezoelectric effect in bone. Nature (Lond.)197, 81 (1963).Google Scholar
  93. Sheridan, J. D.: Electrophysiological study of special connections between cells in the early chick embryo. J. Cell Biol.31, C1-C5 (1966).PubMedGoogle Scholar
  94. Shubnikov, A. V.: Quoted by V. A. Bazenhov 1961 (1946).Google Scholar
  95. Smith, S. D.: Induction of partial limb regeneration inRana pipiens by galvanic stimulation. Anat. Rec.158, 89–98 (1967).PubMedGoogle Scholar
  96. Solomons, C. C., D. Shuster, andA. Kwan: Biochemical effects of mechanical stress. Aerospace Med.36, 33–34 (1965).Google Scholar
  97. Spruch, G. M., andM. H. Shamos: Light induced effects in bone. Nature (Lond.)212, 1586–1587 (1966).Google Scholar
  98. Tasaki, I., I. Singer, andT. Takenaka: Effects of internal and external ionic environment on excitability of squid giant axon. J. gen. Physiol.48, 1095–1123 (1965).PubMedGoogle Scholar
  99. Teorell, T.: Electrokinetic considerations of mechanoelectrical transduction. Ann. N.Y. Acad. Sci.137, 950–966 (1966).PubMedGoogle Scholar
  100. Termine, J. D., andA. S. Posner: Amorphous/crystalline interrelationships in bone mineral. Calc. Tiss. Res.1, 8–23 (1967).Google Scholar
  101. Thompson, D'Arcy: On growth and form. ed. 2, vol. 2 (reprinted 1963), p. 958–1025. Cambridge: Cambridge University Press 1936.Google Scholar
  102. Tischendorf, F.: Das Verhalten der haversschen Systeme bei Belastung. Arch. Entwickl.-Mech. Org.145, 318–332 (1951).Google Scholar
  103. Weiss, L., andE. Mayhew: The cell periphery. New Engl. J. Med.276, 1354–1362 (1967).PubMedGoogle Scholar
  104. Weiss, P.: In: Wound healing. Biological foundation of repair at the cellular level. Washington, D. C.: National Academy of Sciences-National Research Council 1966.Google Scholar
  105. Wolff, J.: Das Gesetz der Transformation der Knochen. 152 p. Berlin: A. Hirschwald 1892.Google Scholar
  106. Yasuda, I.: On the piezoelectric activity of bone. J. Jap. Orthop. Surg. Soc.28, 267–269 (1954) [in Japanese].Google Scholar
  107. —,K. Noguchi, andT. Sata: Dynamic and electric callus. Proc. Jap. Orthop. Surg. Soc. (Abstract) J. Bone Jt Surg.37-A, 1292–1293 (1955).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • C. Andrew L. Bassett
    • 1
    • 2
  1. 1.Orthopaedic Research LaboratoriesColumbia University College of Physicians and SurgeonsNew YorkUSA
  2. 2.New York Orthopaedic HospitalColumbia Presbyterian Medical CenterNew York

Personalised recommendations