Acta Mathematicae Applicatae Sinica

, Volume 12, Issue 2, pp 169–175 | Cite as

On the minimum distance determined byn (≤ 7) points in an isoscele right triangle

  • Xu Yinfeng 
Article

Abstract

LetT denote a finite set of points in a unit isoscele right triangle (i.e., the right sides are both one),f(T) the minimum distance between pairs of points ofT, and
$$f\vartriangle (n) = \mathop {\max }\limits_{||T|| = n} f(T).$$
In this paper, the exact values offΔ (n) for 2≤n≤7 and the corresponding configurations are given.

Key words

Configuration unit square limitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Goldberg. The Packing of Equal Circles in a Square.Math. Mag., 1970, 43: 24–30.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    M. Goldberg. Packing 14, 16, 17 and 20 Circles in a Circle.Math. Mag., 1971, 44: 134–139.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    J. Schaer. The Densest Packing of 9 Circles in a Square.Canad. Math. Bull., 1965, 8: 273–277.MATHMathSciNetGoogle Scholar
  4. [4]
    J. Schaer. On the Packing of Ten Equal Circles in a Square.Math. Mag., 1971, 44: 139–140.MATHMathSciNetGoogle Scholar
  5. [5]
    J. Schaer and A. Meir. On a Geometric Extreme Problem.Canad. Math. Bull., 1965, 8: 21–27.MATHMathSciNetGoogle Scholar
  6. [6]
    K. Schluter. Written Communication, 1977.Google Scholar

Copyright information

© Science Press 1996

Authors and Affiliations

  • Xu Yinfeng 
    • 1
  1. 1.School of ManagementXi'an Jiaotong UniversityXi'anChina

Personalised recommendations