Acta Mathematicae Applicatae Sinica

, Volume 10, Issue 3, pp 302–314 | Cite as

A branch bound method for subset sum problem

  • Wu Shiquan 


This paper indicates the possible difficulties for applying the interior point method to NP-complete problems, transforms an NP-complete problem into a nonconvex quadratic program and then develops some convexity theories for it. Lastly it proposes an algorithm which uses Karmarkar's algorithm as a subroutine. The finite convergence of this algorithm is also proved.

Key words

Subset sum problem nonconvex quadratic program convex envelope interior point method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L.G. Khachiyan. A Polynomial Algorithm for Linear Programming.Doklady Akad. Nauk USSR, 1979, 244 (5): 1093–1096, Translated inSoviet Math. Doklady, 1979, 191–194.MATHMathSciNetGoogle Scholar
  2. [2]
    N. Karmarkar. A New Polynomial-time Algorithm For Linear Programming.Combinatorica, 1984, 4 (4): 372–375.MathSciNetGoogle Scholar
  3. [3]
    N. Karmarkar. An Interior Point Approach to NP-Complete Problems (Extended Abstract). AT & T Bell Laboratories, Murray Hill, New Jersey 07974.Google Scholar
  4. [4]
    M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the Theory of NP-Completeness, Freeman, New York, 1980.Google Scholar
  5. [5]
    Paul F. Kough. The Indefinite Quadratic Programming Problem.Operations Research, 1979, 27 (3): 516–533.MATHMathSciNetGoogle Scholar
  6. [6]
    Nguyen Van Thoai and Hoang Tuy. Convergent Algorithms for Minimizing A Concave Function.Mathematics of Operation Research, 1980, 5 (4): 556–566.CrossRefMATHGoogle Scholar
  7. [7]
    Katta C. Murty and Santosh N. Kabadi. Some NP-Complete Problems in Quadratic and Nonlinear Programming.Mathematical Programming, 1980, 39: 117–129.MathSciNetGoogle Scholar
  8. [8]
    Yinyu Ye and Edison Tse. An Extension of Karmarkar's Projective Algorithm for Convex Quadratic Programming.Mathematical Programming, 1989, 44: 157–179.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, N.J. 1969.Google Scholar
  10. [10]
    Martin Grötschel, Lázló Lovász and Alexander Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, 1988.Google Scholar
  11. [11]
    A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience, New York, 1986.MATHGoogle Scholar
  12. [12]
    Robert G. Bland, D. Goldfarb and M.J. Todd. The Ellipsoid Method: A Survey.Operations Research, 1981, 29 (6): 1039–1091.MATHMathSciNetGoogle Scholar
  13. [13]
    Kâscku Yosida. Functional Analysis. Springer-Verlag, New York, 1971.MATHGoogle Scholar
  14. [14]
    M. Padberg and G. Rinaldi. A Branch and Cut Algorithm for the Resolution of Large Scale Symmetric Traveling Salesman Problems. Ecole Polytechnique, Laboratoire d'Econométrie, No. 319, 1989.Google Scholar
  15. [15]
    D.F. Shanno and Ansuman Bagchi. An Unified View of Interior Point Methods for Linear Programming. Rutcor, Rutgers University, New Brunswick, NJ08903, 1988.Google Scholar

Copyright information

© Science Press, Beijing, China and Allerton Press, Inc., New York, U.S.A. 1994

Authors and Affiliations

  • Wu Shiquan 
    • 1
  1. 1.Institute of Applied Mathematicsthe Chinese Academy of SciencesBeijingChina

Personalised recommendations