Advertisement

Experientia

, Volume 36, Issue 1, pp 131–133 | Cite as

Uptake of3H-GABA (γ-aminobutyric acid) and3H-leucine in the pancreatic islets and substantia nigra of the rat

  • Y. Okada
  • Y. Hosoya
  • H. Taniguchi
Specialia

Summary

Isolated pancreatic islets and thin slices of substantia nigra (SN) of the rat were incubated in a medium containing3H-GABA or3H-leucine to test the activity of both tissues in the uptake of those substances. Pancreatic islets showed a low uptake of both3H-GABA and3H-leucine, but SN had a high activity in the uptake of3H-GABA, though not for3H-leucine. This suggests that GABA contained at high levels in the pancreatic islets plays some functional role other than in neurotransmission as in the central nervous system (CNS).

Keywords

Nervous System Central Nervous System High Activity Functional Role Substantia Nigra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.
    M. Otsuka, in The structure and function of nervous tissue, vol. 4, p. 249. Ed. G.H. Bourne. Academic Press, New York 1972.CrossRefGoogle Scholar
  2. 4.
    Y. Okada, in: GABA in nervous system function, p. 235 Ed. E. Roberts, T.N. Chase and D.B. Tower. Raven Press, New York 1976.Google Scholar
  3. 5.
    N. Seiler and M. Wiechmann, Z. Physiol. Chem.350, 1493 (1969).CrossRefGoogle Scholar
  4. 6.
    D.T. Whelan, C.R. Scriver and F. Mohyddin, Nature224, 916 (1969).CrossRefGoogle Scholar
  5. 7.
    R.H. Drummond and A.T. Phillips, J. Neurochem.23, 1207 (1974).CrossRefGoogle Scholar
  6. 8.
    G. Biel, E. Gylfe, B. Hellman and V. Neuhoff, Acta physiol. scand.84, 247 (1972).CrossRefGoogle Scholar
  7. 9.
    Y. Okada, H. Taniguchi, Ch. Shimada and F. Kurosawa, Proc. Japan Acad.51, 760 (1975).CrossRefGoogle Scholar
  8. 10.
    Y. Okada, H. Taniguchi and Ch. Shimada, Science194, 620 (1976).CrossRefGoogle Scholar
  9. 11.
    T. Hökfelt and A. Ljungdahl, Exp. Brain Res.14, 354 (1972).CrossRefGoogle Scholar
  10. 12.
    L.L. Iversen and J.S. Kelly, Biochem. Pharmac.24, 933 (1975).CrossRefGoogle Scholar
  11. 13.
    P.E. Lacy and M. Kostianovsky, Diabetes16, 35 (1967).CrossRefGoogle Scholar
  12. 14.
    Y. Okada and R. Hassler, Brain Res.49, 214 (1973).CrossRefGoogle Scholar
  13. 15.
    T. Hökfelt, G. Johnston and A. Ljungdahl, Life Sci.9, 203 (1970).CrossRefGoogle Scholar
  14. 16.
    T. Hattori, P.L. McGeer, H.C. Fibiger and E.G. McGeer, Brain Res.54, 103 (1973).CrossRefGoogle Scholar
  15. 17.
    S.C. Woods and D. Porte, Jr., Physiol. Rev.54, 596 (1974).CrossRefGoogle Scholar
  16. 18.
    O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randle, J. biol. Chem.193, 265 (1951).PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • Y. Okada
    • 1
  • Y. Hosoya
    • 1
  • H. Taniguchi
    • 1
  1. 1.Department of Neurochemistry and AnatomyTokyo Metropolitan Institute for NeuroscinecesTokyoJapan

Personalised recommendations