Advertisement

Agents and Actions

, Volume 41, Issue 3–4, pp 188–192 | Cite as

A study of the mechanism of action of the mild analgesic dipyrone

  • Steven G. Shimada
  • Ivan G. Otterness
  • John T. Stitt
Pain

Abstract

The mechanism of action for the mild analgesics is controversial. While some have proposed that they inhibit prostaglandin synthesis in the central nervous system to interfere with nociceptive mediators in the brain, others have proposed that they act directly on nociceptive neural pathways to produce analgesia. This class of drugs also possesses antipyretic activity. We examined the antipyretic effect of one such drug, dipyrone, because this might elucidate the mechanism of its analgesic activity. In rats implanted with a femoral vein catheter and a cannula guide tube aimed towards the organum vasculosum laminae terminalis (OVLT) in the brain, an i.v. injection of 2 μg/kg interleukin-1β (IL-1β) produced a fever of 0.38±0.07°C while an injection of 20 ng prostaglandin E1 (PGE) into the OVLT produced a fever of 1.18±0.18°C. Dipyrone (25 mg/kg, i.v.) decreased the IL-1β fever but had no effect on the PGE fever. After pretreatment with the immunoadjuvant, zymosan, the IL-1β fevers were enhanced to equal those induced by PGE. Only 0.1 μg/kg, i.v. IL-1β raised body temperature by 1.20±0.10°C. An increased dose of dipyrone (50 mg/kg, i.v.) was required to attenuate this IL-1β fever; however, the PGE fever remained unaffected by this treatment with dipyrone. Thus, dipyrone treatment blocks IL-1β fever where synthesis of prostaglandin is a crucial step in the febrile process, but it has no effect on PGE fever where synthesis is bypassed. This suggests that dipyrone, probably through its active metabolites, inhibits prostaglandin synthesis to induce antipyresis and, by analogy, analgesia as well.

Key words

Fever Prostaglandin Interleukin-1 OVLT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. R. Vane,Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature (New Biology)231, 232–235 (1971).Google Scholar
  2. [2]
    H. O. Handwerker,Influences of algogenic substances and prostaglandins on the discharges of unmyelinated cutaneous nerve fibers identified as nociceptors. InAdvances in Pain Research and Therapy, Vol. 1. (Eds. J. J. Bonica and D. Albe-Fessard) pp. 41–45, Raven Press, New York 1976.Google Scholar
  3. [3]
    H.-G. Schaible and R. F. Schmidt,Entladungsverhalten von Rezeptoren mit feinen Afferenzen aus normalen und entzundeten Gelenken: Einfluß von Analgetika und Prostaglandinen. In100 Jahre Pyrazolone, Eine Bestandsaufnahme. (Eds. K. Brune and R. Lanz) pp. 87–99, Urban & Schwarzenberg, Munich 1985.Google Scholar
  4. [4]
    G. Guilbaud, J. M. Benoist, M. Gautron and V. Kayser,Aspirin clearly depresses responses of ventrobasal thalamus neurons to joint stimuli in arthritic rats. Pain13, 153–163 (1982).CrossRefPubMedGoogle Scholar
  5. [5]
    R. K. S. Lim, F. Guzman, D. W. Rodgers, K. Goto, C. Braun, G. D. Dickerson and R. J. Engle,Site of action of narcotic and non-narcotic analgesics determined by blocking bradykininevoked visceral pain. Arch. Int. Pharmacodyn.152, 25–58 (1964).PubMedGoogle Scholar
  6. [6]
    K. Matsuda, K. Ohnishi, E. Misaka and M. Yamazaki, Decrease of urinary prostaglandin E2 and prostaglandin F excretion by nonsteroidal anti-inflammatory drugs in rats. Relationship to anti-inflammatory activity. Biochem Pharmacol.32, 1347–1352 (1983).CrossRefPubMedGoogle Scholar
  7. [7]
    K. Brune,Prostaglandins and the mode of action of antipyretic analgesic drugs. Am. J. Med.75 (5A), 19–23 (1983).CrossRefGoogle Scholar
  8. [8]
    J. R. Flower and J. R. Vane,Inhibition of prostaglandin synthetase in brain explains the anti-pyretic activity of paracetamol (4-acetamidophenol). Nature (New Biology)240, 410–411 (1972).CrossRefGoogle Scholar
  9. [9]
    A. Dembinska-Kiec, A. Zmuda and J. Krupinska,Inhibition of prostaglandin synthetase by aspirin-like drugs in different microsomal preparations. InAdvances in Prostaglandin and Thromboxane Research, Vol. 1. (Eds. B. Samuelsson and R. Paoletti) pp. 99–103, Raven Press, New York 1976.Google Scholar
  10. [10]
    K.-H. Carlsson, J. Helmreich and I. Jurna,Activation of inhibition from the periaqueductal grey matter mediates central analgesic effect of metamizol (dipyrone). Pain27, 373–390 (1986).CrossRefPubMedGoogle Scholar
  11. [11]
    J. O. Marquez and S. H. Ferreira,Regional dipyrone nociceptor blockade: A pilot study. Braz. J. Med. Biol. Res.20, 441–444 (1987).PubMedGoogle Scholar
  12. [12]
    X. He, V. Neugebauer, H.-G. Schaible and R. F. Schmidt,New aspects of the mode of action of dipyrone. InNew Pharmacological and Epidemiological Data in Analgesics Research. (Ed. K. Brune) pp. 9–18, Birkhäuser, Basel 1990.Google Scholar
  13. [13]
    H. O. Handwerker, A. Beck, C. Forster, Th. Gall and W. Magerl,Analgesic effects of dipyrone as compared to placebo. InNew Pharmacological and Epidemiological Data in Analgesics Research. (Ed. K. Brune) pp. 19–28, Birkhäuser, Basel 1990.Google Scholar
  14. [14]
    A. Tjølsen, A. Lund and K. Hole,Antinociceptive effect of paracetamol in rats is partly dependent on spinal serotonergic systems. Eur. J. Pharmacol.193, 193–201 (1991).CrossRefPubMedGoogle Scholar
  15. [15]
    K. McCormack and K. Brune,Dissociation between the antinociceptive and anti-inflammatory effects of the nonsteroidal anti-inflammatory drugs. A survey of their analgesic efficacy. Drugs41, 533–547 (1991).PubMedGoogle Scholar
  16. [16]
    C. Rosendorff and C. J. Woolf,Inhibition of fever.In Anti-inflammatory Drugs (Eds. J. R. Vane and S. H. Ferreira) pp. 255–279, Springer, Berlin 1979.Google Scholar
  17. [17]
    E. Atkins,The pathogenesis of fever. Physiol. Rev.40, 580–646 (1960).PubMedGoogle Scholar
  18. [18]
    C. A. Dinarello,Biology of interleukin 1, FASEB J.2, 108–115 (1988).PubMedGoogle Scholar
  19. [19]
    J. T. Stitt and H. A. Bernheim,Fundamental differences between endogeneous pyrogen fevers produced by intravenous and intracerebroventricular routes in the rabbit. J. Appl. Physiol.509, 342–347 (1985).Google Scholar
  20. [20]
    J. T. Stitt, Differential sensitivity in the sites of fever production by prostaglandin E1 within the hypothalamus of the rat. J. Physiol.432, 99–110 (1990).Google Scholar
  21. [21]
    S. G. Shimada, J. T. Stitt, and P. Angelogianni,Effects of cold and capsaicin desensitization on prostaglandin E hypothermia in rats. J. Appl. Physiol.68, 2618–2622 (1990).PubMedGoogle Scholar
  22. [22]
    K. Matsumura, Y. Watanabe, H. Onoe, Y. Watanabe and O. Hayaishi, High density of prostaglandin E2 binding sites in the anterior wall of the 3rd ventricle: A possible site of its hyperthermic action. Brain Res.533, 147–151 (1990).CrossRefPubMedGoogle Scholar
  23. [23]
    J. deGroot, The Rat Forebrain in Stereotaxic Coordinates, North-Holland, Amsterdam 1967.Google Scholar
  24. [24]
    M. Cormareche-Leydier, S. G. Shimada and J. T. Stitt,Hypothalamic thermosensitivity in capsaicin-desensitized rats. J. Physiol. Lond.363, 227–236 (1985).PubMedGoogle Scholar
  25. [25]
    J. T. Stitt and S. G. Shimada,Immuno-adjuvants enhance the febrile responses of rats to endogeneous pyrogen. J. Appl. Physiol.67, 1734–1739 (1989).PubMedGoogle Scholar
  26. [26]
    K. Brune and H. Alpermann,Non-acidic pyrazoles: Inhibition of prostaglandin production, carrageenan oedema and yeast fever. Agents and Actions13, 360–363 (1983).PubMedGoogle Scholar
  27. [27]
    R. Lanz, P. Polster and K. Brune,Antipyretic analgesics inhibit prostaglandin release from astrocytes and macrophages similarly. Eur. J. Pharmacol.130, 105–109 (1986).CrossRefPubMedGoogle Scholar
  28. [28]
    S. H. Ferreira, B. B. Lorenzetti and D. I. DeCampos,Induction, blockade and restoration of a persistent hypersensitive state. Pain42, 365–371 (1990).CrossRefPubMedGoogle Scholar
  29. [29]
    K. Brune and R. Lanz,Nonopioid analgesics. InAnalgesics: Neurochemical, Behavioral and Clinical Perspectives. (Eds. M. Kuhar and G. Pasternak) pp. 149–173, Raven Press, New York 1984.Google Scholar
  30. [30]
    A. L. Willis,Parallel assay of prostaglandin-like activity in rat inflammatory exudate by means of cascade superfusion. J. Pharm. Pharmacol.21, 126–128 (1969).PubMedGoogle Scholar
  31. [31]
    K. Brune,Biodistribution of salicylates: A clue to the understanding of some effects and side effects. Agents and Actions 2 (Suppl.), 163–177 (1974).Google Scholar
  32. [32]
    Y. O. Taiwo and J. D. Levine,Prostaglandins inhibit endogeneous pain control mechanisms by blocking transmission at spinal noradrenergic synapses. J. Neurosci.8, 1346–1349 (1988).PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • Steven G. Shimada
    • 1
  • Ivan G. Otterness
    • 2
  • John T. Stitt
    • 1
  1. 1.John B. Pierce Foundation LaboratoryYale University School of MedicineNew HavenUSA
  2. 2.Department of Immunology and Infectious Diseases, Central Research DivisionPfizer, Inc.GrotonUSA

Personalised recommendations