European Journal of Clinical Microbiology

, Volume 2, Issue 2, pp 111–115 | Cite as

In vitro activity of ciprofloxacin, norfloxacin and nalidixic acid

  • A. Bauernfeind
  • C. Petermüller
Original Articles

Abstract

The in vitro antibacterial activity of the new quinoline derivative ciprofloxacin (BAY 0 9867) was evaluated in comparison to norfloxacin and nalidixic acid using 495 clinical strains of gram-negative and gram-positive bacteria. The compound was highly active againstEnterobacteriaceae, with MICs ranging from 0.008 mg/l to 4 mg/l, whereas the MICs of norfloxacin ranged from 0.03 mg/l to 16 mg/l. All strains ofPseudomonas aeruginosa andAcinetobacter calcoaceticus were inhibited with a concentration of 2 mg/l ciprofloxacin and 32 mg/l norfloxacin. Ciprofloxacin was also active against gram-positive cocci. The MICs forStaphylococcusaureus, Staphylococcus epidermidis, andStreptococcus faecalis ranged from 0.008 to 2.0 mg/l. The activity of ciprofloxacin was only slightly influenced by inoculum size, whereas an acid environment caused a noticeable decrease in the activity. Ciprofloxacin would seem to be a promising antibacterial agent for the treatment of urinary tract infection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H., Brundage, R. P.: 1,8-naphthyridine derivates. A new class of chemotherapeutic agents. Journal of Medicinal and Pharmaceutical Chemistry 1962, 5: 1063–1065.Google Scholar
  2. 2.
    Shimizu, M., Nakamura, S., Takase, Y., Kurobe, N.: Pipemidic acid: absorption, distribution, and excretion. Antimicrobial Agents and Chemotherapy 1975, 7: 441–446.PubMedGoogle Scholar
  3. 3.
    Kershaw, N. J., Leigh, D. A.: The antibacterial and pharmacological activity of oxolinic acid (Prodoxol). Journal of Antimicrobial Chemotherapy 1975, 1: 311.PubMedGoogle Scholar
  4. 4.
    Lumish, R. M., Norden, C. W.: Cinoxacin: in vitro antibacterial studies of a new synthetic organic acid. Antimicrobial Agents and Chemotherapy 1975, 7: 159–163.PubMedGoogle Scholar
  5. 5.
    Giamarellou, H. G., Jackson, G.: Antibacterial activity of cinoxacin in vitro. Antimicrobial Agents and Chemotherapy 1975, 7: 688.PubMedGoogle Scholar
  6. 6.
    Braveny, I., Machka, K.: In vitro activity of rosoxacin (Win 35 213) againstNeisseria gonorrhoeae. Arzneimittel-Forschung 1980, 9: 1476–1478.Google Scholar
  7. 7.
    Soussy, C. J., Thibault, M., Kitzis, M. D., Acar, J. F., Duval, J., Chabbert, Y. A.: Activité antibactérienne comparée de six quinolones. Annales de Microbiologie 1977, 128 B: 19–33.Google Scholar
  8. 8.
    Thibault, M., Koumaré, B., Soussy, C. J., Duval, J.: Relations structure-activité dans le groupe des quinolones: études de l'activité antibacteriénne de deux nouveaux composés. Annales de Microbiologie 1981, 132 A: 267–281.Google Scholar
  9. 9.
    Norrby, S. R., Jonsson, M.: Antibacterial activity of norfloxacin. Antimicrobial Agents and Chemotherapy 1983, 23: 15–18.PubMedGoogle Scholar
  10. 10.
    Ito, A., Hirai, K., Inoue, M., Koga, H., Suzue, S., Irikura, T., Mitsuhashi, S.: In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrobial Agents and Chemotherapy 1980, 17: 103–108.PubMedGoogle Scholar
  11. 11.
    Kloos, W. E., Smith, P. B.: Staphylococci. In: Lenette, E. H., Balows, A., Hausler, W. J., Truant, J. P. (ed.): Manual of clinical microbiology. American Society for Microbiology, Washington, D.C. 1980, p. 83–87.Google Scholar
  12. 12.
    Facklam, R. R.: Streptococci and aerococci. In: Lenette, E. H., Balows, A., Hausler, W. J., Truant, J. P. (ed.): Manual of Clinical Microbiology. American Society for Microbiology, Washington, D.C. 1980, p. 88–110.Google Scholar
  13. 13.
    Washington, J. A., Sutter, V. L.: Dilution susceptibility test: agar and macro-broth dilution procedures. In: Lenette, E. H., Balows, A., Hausler, W. J., Truant, J. P. (ed.): Manual of Clinical Microbiology. American Society for Microbiology, Washington, D.c. 1980, p. 453–458.Google Scholar
  14. 14.
    Gavan, T. L., Barry, A. L.: Microdilution test procedures. In: Lenette, E. H., Balows, A., Hausler, W. J., Truant, J. P. (ed.): Manual of Clinical Microbiology. American Society for Microbiology, Washington, D.C. 1980, p. 459–462.Google Scholar
  15. 15.
    Bauernfeind, A.: Progress in chemotherapeutic heterocyclic carbonic acids. Drugs under Experimental and Clinical Research 1983, 9 (in press).Google Scholar
  16. 16.
    Bauernfeind, A., Grümmer, G.: Biochemical effects of nalidixic acid onEscherichia coli. Chemotherapia 1965/66, 10: 95–102.Google Scholar
  17. 17.
    Bauernfeind, A.: Mode of action of nalidixic acid. Antibiotics and Chemotherapy 1971, 17: 122–136.PubMedGoogle Scholar
  18. 18.
    Goss, W. A., Deitz, W. H., Cook, T. M.: Mechanism of action of nalidixic acid onEscherichia coli. II. Inhibition of desoxyribonucleic acid synthesis. Journal of Bacteriology 1965, 89: 1068–1074.PubMedGoogle Scholar
  19. 19.
    Boppana, V. K., Swanson, B. N.: Determination of norfloxacin a new nalidixic acid analog, in human serum and urine by high-performance liquid chromatography. Antimicrobial Agents and Chemotherapy 1982, 21: 808–810.PubMedGoogle Scholar

Copyright information

© Vieweg Publishing 1983

Authors and Affiliations

  • A. Bauernfeind
    • 1
  • C. Petermüller
    • 1
  1. 1.Institute for Hygiene and Medical MicrobiologyMunich UniversityMunich 2FRG

Personalised recommendations