Advertisement

Pharmaceutisch Weekblad

, Volume 6, Issue 5, pp 185–194 | Cite as

Development and optimization of pharmaceutical formulations using a simplex lattice design

  • R. Huisman
  • H. V. Van Kamp
  • J. W. Weyland
  • D. A. Doornbos
  • G. K. Bolhuis
  • C. F. Lerk
Original Articles

Abstract

The composition of pharmaceutical formulations is often subject to trial and error. This approach is time consuming and unreliable in finding the best formulation. Optimization by means of an experimental design might be helpful in shortening experimenting time. Such a design with the concomitant mathematical models, reveals effects and interactions of the variables. The independent variables are the different compositions of the mixtures of the chosen ingredients [drug(s) and excipients]. The dependent variables are the properties (responses) of the formulation. When all responses of interest have been expressed in models that describe the response as a function of the composition of the mixture, the models can be combined graphically or mathematically to find a composition satisfying all demands. In this paper an introduction to the use of mixture designs will be given by means of a theoretical part and an example: optimizing a tablet formulation consisting of excipients only.

Keywords

Public Health Internal Medicine Mathematical Model Pharmaceutical Formulation Tablet Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fonner DE, Buck JR, Banker GS. Mathematical Optimization Techniques in Drug Product Design and Process Analysis. J Pharm Sci 1970;59:1587–96.PubMedGoogle Scholar
  2. 2.
    Doornbos DA. Optimisation in pharmaceutical sciences. Pharm Weekbl [Sci] 1981;3:33–61.Google Scholar
  3. 3.
    Schwartz JB, Flamholz JR, Press RH. Computer Optimization of Pharmaceutical Formulations 1. J Pharm Sci 1973;62:1165–70.PubMedGoogle Scholar
  4. 4.
    Jontscher C, Welikowa E. Optimierung der Zusammensetzung einer Mehrkomponenten-Arzneiform durch mathematische Versuchsplanung und experimentelle Prüfung. Pharmazie 1981;36:32–4.PubMedGoogle Scholar
  5. 5.
    Leuenberger H, Guitard P, Sucker H. Mathematische Modellierung und Optimierung Pharmazeutisch-technologischer Qualitätsmerkmale fester Arzneiformen. Pharm Unserer Zeit 1976;5:65–76.PubMedGoogle Scholar
  6. 6.
    Anik ST, Sukumar L. Extreme Vertexes Design in Formulation Development: Solubility of Butoconazole Nitrate in a Multicomponent System. J Pharm Sci 1981;70:897–900.PubMedGoogle Scholar
  7. 7.
    Scheffé H. Experiments with mixtures. J R Stat Soc 1958;B20:344–60.Google Scholar
  8. 8.
    Snee RD. Design and Analysis of Mixture Experiments. J Qual Technol 1971;3:159–69.Google Scholar
  9. 9.
    Box GEP. The exploration and exploitation of response surfaces. Biometrics 1954;10:16.Google Scholar
  10. 10.
    Davies OL, ed. The determination of optimum conditions. In: The design and analysis of industrial experiments. 2nd ed. London-New York: Longman, 1978:495.Google Scholar
  11. 11.
    Cornell JA. Experiments with mixtures, a review. Technometrics 1973;15:437–55.Google Scholar
  12. 12.
    Gorman JW, Hinman JE. Simplex lattice designs for multicomponent systems. Technometrics 1962;4:463–87.Google Scholar
  13. 13.
    Draper NR, Smith H. Applied regression analysis. New York: John Wiley and Sons, 1966:128–62.Google Scholar
  14. 14.
    Marquardt DW, Snee RD. Test statistics for mixture models. Technometrics 1974;16:533–7.Google Scholar
  15. 15.
    Box GEP, Cox DR. An analysis of transformations. J R Stat Soc 1964;B26:211–52.Google Scholar
  16. 16.
    Chatterjee S, Price B. Regression Analysis by Example. New York: John Wiley and Sons, 1977:117–20.Google Scholar
  17. 17.
    Becker NG. Models for the response of a mixture. J R Stat Soc 1968;B30:349–58.Google Scholar
  18. 18.
    Snee RD. Techniques for the analysis of mixture data. Technometrics 1973;15:517–28.Google Scholar
  19. 19.
    Draper NR, St John RC. A mixture model with inverse terms. Technometrics 1977;19:37–46.Google Scholar
  20. 20.
    Cornell JA. Experiments with mixtures: An update and bibliography. Technometrics 1979;21:95–106.Google Scholar
  21. 21.
    Kurotori IS. Experiments with mixtures of components having lower bounds. Indust Qual Cont 1966;22:592–6.Google Scholar
  22. 22.
    Murty JS, Das MN. Design and analysis of experiments with mixtures. Ann Mathemat Stat 1968;39:1517–39.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1984

Authors and Affiliations

  • R. Huisman
    • 1
  • H. V. Van Kamp
    • 1
  • J. W. Weyland
    • 2
  • D. A. Doornbos
    • 2
  • G. K. Bolhuis
    • 1
  • C. F. Lerk
    • 1
  1. 1.Laboratory for Pharmaceutical Technology and DispensingUniversity of GroningenAW GroningenThe Netherlands
  2. 2.Research Group Optimization, Laboratory for Analytical and Pharmaceutical ChemistryUniversity of GroningenAW GroningenThe Netherlands

Personalised recommendations