Combustion, Explosion and Shock Waves

, Volume 32, Issue 4, pp 454–459 | Cite as

Laser initiation of PETN

  • V. I. Tarzhanov
  • A. D. Zinchenko
  • V. I. Sdobnov
  • B. B. Tokarev
  • A. I. Pogrebov
  • A. A. Volkova


We studied experimentally the initiation ofPETN with a dispersity of 3700–22,000cm2/kg and a density of 0.6–1.3g/cm3 by a laser (λ=1.06 µm and τ=40nsec). Data processing was based on dimensional analysis of the process and study of the phenomena accompanying initiation (crater formation and sudden change in optical characteristics). This made it possible to describe empirically the complex dependence of the threshold initiation energy ofPETN on its density and dispersity, the irradiation-zone diameter, and the acoustic impedance of a transparent base plate. The mechanism of laser initiation ofPETN is considered.


Physical Chemistry Dynamical System Data Processing Sudden Change Base Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Brish, I. A. Galeev, and B. N. Zaitsev, “Initiation of detonation in condensed explosives by the radiation of an optical quantum generator,”Fiz. Goreniya Vzryva,2, No. 3, 132–133 (1966).Google Scholar
  2. 2.
    I. A. Galeev and B. N. Zaitsev, “The reflectance of explosives,”Fiz. Goreniya Vzryva,5, No. 3, 447 (1969).Google Scholar
  3. 3.
    A. A. Brish, I. A. Galeev, B. N. Zaitsev, et al., “The initiation mechanism of condensed explosives by an optical quantum generator radiation,”Fiz. Goreniya Vzryva,5, No. 4, 475–480 (1969).Google Scholar
  4. 4.
    H. Ostmark and H. Nilsson, “Laser ignition of explosives: a mass-spectroscopic study of the preignition reaction zone,” in: Proc. 9th Symp. (Int.) on Detonation, Portland (1989), p. 65.Google Scholar
  5. 5.
    D. L. Paisley, “Prompt detonation of secondary explosives by laser,”ibid., p. 492.Google Scholar
  6. 6.
    A. A. Volkova, A. D. Zinchenko, I. V. Sanin, et al., “Time characteristics of PETN initiation by laser irradiation,”Fiz. Goreniya Vzryva,13, No. 5, 760–766 (1977).Google Scholar
  7. 7.
    A. A. Volkova, V. F. Kuropatenko, A. V. Pershina, et al., “Mathematical modeling of PETN initiation by laser irradiation,” in:Detonation. Critical Phenomena. Physicochemical Conversions in Shock Waves [in Russian], Chernogolovka (1978), p. 46.Google Scholar
  8. 8.
    L. C. Yang, Laser fiber optics ordnance initiation system, “in: Proc. 9th Symp. on Explosives and Pyrotechnics (1976), p. 41.Google Scholar
  9. 9.
    E. I. Aleksandrov, A. G. Voznyuk, and V. P. Tsipilev, “Effect of absorbing impurities on explosive ignition by laser irradiation,”Fiz. Goreniya Vzryva,25, No. 1. 3–9 (1989).Google Scholar
  10. 10.
    A. D. Zinchenko, V. I. Sdobnov, V. I. Tarzhanov, et al., “Effect of laser on a porous explosive without initiation,”Fiz. Goreniya Vzryva,27, No. 2, 97–101 (1991).Google Scholar
  11. 11.
    A. D. Zinchenko, A. I. Pogrebov, V. I. Tarzhanov, and B. B. Tokarev, “Optical characteristics of some powder HE,”Fiz. Goreniya Vzryva,28, No. 5, 80–87 (1992).Google Scholar
  12. 12.
    L. I. Sedov,Similarity and Dimensionality Methods in Mechanics [in Russian], Gostekhizdat, Moscow (1957).Google Scholar
  13. 13.
    M. M. Protodyakonov and R. I. Teder,Procedure of Rational Planning of Experiments [in Russian], Nauka, Moscow (1970).Google Scholar
  14. 14.
    F. A. Baum, L. P. Orlenko, B. I. Shekhter, and K. P. Stanyukovich,Physics of Explosion [in Russian], Nauka, Moscow (1975).Google Scholar
  15. 15.
    D. Stirpe, J. Johnson, and J. Wackerli, “Shock initiation of XTX-8003 and pressed PETN,”J. Appl. Phys.,41, No. 9 (1970).Google Scholar
  16. 16.
    G. E. Seay and L. B. Seely, “Plane shock wave initiation of PETN,”J. Appl. Phys.,32, No. 6 (1961).Google Scholar
  17. 17.
    A. Ya. Apin and L. I. Stesik, in:Physics of Explosion, No. 3, Izd. Akad. Nauk SSSR, Moscow (1954).Google Scholar
  18. 18.
    V. K. Bobolev, in:Physics of Explosion, No. 2, Izd. Akad. Nauk SSSR, Moscow (1953).Google Scholar
  19. 19.
    Yu. P. Raizer,Laser Spark and Propagation of Discharges [in Russian], Nauka, Moscow (1974).Google Scholar
  20. 20.
    S. A. Koldunov, K. K. Shvedov, and A. N. Dremin, “Decomposition of porous explosives under the action of shock waves,”Fiz. Goreniya Vzryva,9, No. 2, 295–304 (1973).Google Scholar
  21. 21.
    A. A. Kalmykov, G. N. Rozental', and V. A. Rybakov, “Surface phenomena in laser irradiation of transparent dielectrics,”Prikl. Mekh. Tekh. Fiz., No. 2 (1971).Google Scholar
  22. 22.
    Yu. K. Danileiko, A. A. Manenkov, et al., “Role of absorbing inclusions in the mechanism of failure of transparent dielectrics by laser radiation,”Zh. Éksp. Teor. Fiz.,63, No. 3(9) (1972).Google Scholar
  23. 23.
    A. A. Manenkov,Tr. FIAN,101 (1978).Google Scholar
  24. 24.
    D. Bowden and A. Yoffe,Fast Reactions in Solids, Butterworth Scientific Publ., London (1958).Google Scholar
  25. 25.
    A. N. Dremin, K. K. Shvedov, and O. S. Avdonin, “Compressibility and temperatures shock loading of some porous explosives,”Fiz. Goreniya Vzryva,6, No. 4, 520–529 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. I. Tarzhanov
    • 1
  • A. D. Zinchenko
    • 1
  • V. I. Sdobnov
    • 1
  • B. B. Tokarev
    • 1
  • A. I. Pogrebov
    • 1
  • A. A. Volkova
    • 1
  1. 1.Institute of Technical PhysicsSnezhinsk

Personalised recommendations