Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 33, Issue 1, pp 39–44 | Cite as

Direct root tip conversion ofCatasetum into protocorm-like bodies. Effects of auxin and cytokinin

  • Sandra Colli
  • Gilberto B. Kerbauy
Original Papers

Abstract

Root apex conversion ofCatasetum fimbriatum into protocorm-like bodies (PLBs) can occur in the absence of any added plant growth regulator. The presence of exogenous auxins in media drastically reduced the number of PLBs formed; on the other hand the concentrations of these auxins used greatly increased the process of callus formation. No effect on the mean number of root tip conversions into PLBs was observed with chlorogenic acid. However, this process was significantly increased in one of the concentrations used of p-coumaric acid. BA did not have any effect on callus formation, but caused marked acceleration in the process of root tip conversion and on the mean number of PLBs formed. PLB formation observed in the absence of any exogenous growth substance seemed to reflect a disruption in the interactions between the excised roots and the rest of the plants. The presence of light decreased the process of conversion.

Key words

Catasetum fimbriatum orchid regeneration root bud 

Abbreviations

BA

6-benzylaminopurine

IAA

indole-3-acetic acid

IBA

indolebutyric acid, 2,4-d-2,4-dichlorophenoxyacetic acid

PLB

protocorm-like body

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bui-Dang-Ha D & Nitsch J A (1970) Isolation of zeatin riboside from chicory root. Planta 95: 119–126CrossRefGoogle Scholar
  2. Champagnat M (1971) Recherches sur la multiplication végétative deNeottia nidus-avis Rich. Ann. Sci. Nat. Ser. Bot. 12: 209–248Google Scholar
  3. Eapen S & Gill R (1986) Regeneration of plants from cultured root explants of mothbean (Vigna aconitifolia L. Jacq. Marechal). Theor. Appl. Genet. 72: 384–387CrossRefGoogle Scholar
  4. Eliasson L (1961) The influence of growth substances on the formation of shoot from aspen roots. Physiol. Plant. 14: 150–156Google Scholar
  5. Kefford N P & Caso O H (1972) Organ regeneration on excised roots ofChondrilla juncea and its chemical regulation. Aust. J. Biol. Sci. 25: 691–706Google Scholar
  6. Kerbauy G B (1984a) Regeneration of PLBs throughin vitro culture of root tips ofCatasetum (Orchidaceae). Z. Pflanzenphysiol. 113: 287–291Google Scholar
  7. Kerbauy G B (1984b) Plant regeneration ofOncidium varicosum (Orchidaceae) by means of root tip culture. Plant Cell. Rep. 3: 27–29CrossRefGoogle Scholar
  8. Kerbauy G B (1988) Estudo da formaçãoin vitro de estruturas semelhantes a protocormos a partir de células meristemáticas de raiz deOncidium varicosum Livre-Docência ThesisGoogle Scholar
  9. Kerbauy G B (1991)In vitro conversion ofCattleya root tip cells into PLBs J. Plant Physiol 138: 248–251Google Scholar
  10. Knudson L (1946) A new nutrient solution for germination of orchid seed. Am. Orchid Soc. Bull. 15: 214–217Google Scholar
  11. Kraus J E (1986) Formação e desenvolvimentoin vitro de estruturas semelhantes a protocormos em ápices radiculares deCatasetum pileatum Reichb. (Orchidaceae): aspectos fisiológicos, estruturais e histoquímicos. Doctor Thesis.Google Scholar
  12. Kunieda M K & Kerbauy G B (1986) Formação de gemas em raízes adventícias de couve-flor cultivadasin vitro. Rev. bras. Bot. 9: 231–238Google Scholar
  13. Lazzeri P A & Dunwell J M (1984)In vitro shoot regeneration from seedling root segments ofBrassica oleracea andBrassica napus cultivars. Ann. Bot. 54: 341–350Google Scholar
  14. Lee T T, Starratt A N & Jevnikar J J (1982) Regulation of enzymic oxidation of indole-3-acetic acid and by phenols: structure-activity relationships. Phytochemistry 21: 517–523CrossRefGoogle Scholar
  15. Linsmaier E M & Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18: 100–127Google Scholar
  16. Montaldi E R (1972) Kinetin induction of bud differentiation on roots of entire plants. Z. Pflanzenphysiol. 67: 43–44Google Scholar
  17. Morel G (1974) Clonal multiplication of orchids. In: Withner C L (Ed) The Orchids: Scientific studies (pp 169–222). John Wiley & Sons, New YorkGoogle Scholar
  18. Peterson R L (1975) The initiation and development of roots buds. In: Torrey J G & Clarkson D T (Eds) The Development and Function of Roots (pp 125–161). Academic Press, LondonGoogle Scholar
  19. Sánchez M I (1988) Micropropagaton ofCyrtopodium (Orchidaceae) through root-tip culture. Lindleyana 3: 93–96Google Scholar
  20. Schaeffer G W, Buta J G & Sharpe F (1967) Scopoletin and polyphenol-induced lag in peroxidase catalyzed oxidation of indole-3-acetic acid. Physiol. Plant. 20: 342–347Google Scholar
  21. Stewart J & Button J (1978) Development of callus and plantlets fromEpidendrum root tips culturedin vitro. Am. Orchid Soc. Bull. 47: 607–612Google Scholar
  22. Torrey J G (1958) Endogenous bud and root formation by isolated roots ofConvolvulus grownin vitro. Plant Physiol. 33: 258–263Google Scholar
  23. Torrey J G (1976) Root hormones and plant growth. Ann. Rev. Plant Physiol. 27: 435–459CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Sandra Colli
    • 1
    • 2
  • Gilberto B. Kerbauy
    • 1
    • 2
  1. 1.Department of Animal and Plant BiologyLondrina State UniversityLondrinaBrazil
  2. 2.Department of BotanyUniversity of São PauloSão PauloBrazil

Personalised recommendations