Update on genetics of Huntington's disease: availability of direct and accurate predictive test

  • Squitieri F. 
  • Campanella G. 
  • Hayden M. R. 
Editorial

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andrew S.E., Goldberg Y.P., Kremer B. et al.:The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat. Genet. 4: 398–403, 1993.PubMedGoogle Scholar
  2. [2]
    Andrew S.E., Goldberg Y.P., Kremer B. et al.:Huntington's disease without CAG expansion: phenocopies or errors in assignment? Am. J. Hum. Genet. 54: 852–863, 1994.PubMedGoogle Scholar
  3. [3]
    Benjamin C.M., Adam S., Wiggins S. et al.:Proceed with care: direct predictive testing for Huntington's disease. Am. J. Hum. Genet. 55: 606–617, 1994.PubMedGoogle Scholar
  4. [4]
    Duyao M., Ambrose C., Myers R.H., Novelletto A. et al.:Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat. Genet. 4: 387–392, 1993.PubMedGoogle Scholar
  5. [5]
    Goldberg Y.P., Kremer B., Andrew S.E. et al.:Molecular analysis of new mutations for Huntington's disease: intermediate alleles and sex of origin effects. Nat. Genet. 5: 174–179, 1993.PubMedGoogle Scholar
  6. [6]
    Gusella J.F., Wexler N.S., Conneally P.M. et al.:A polymorphic marker genetically linked to Huntington's disease. Nature 306: 234–238, 1983.PubMedGoogle Scholar
  7. [7]
    Huntington's Disease Collaborative Research Group:A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971–983, 1993.Google Scholar
  8. [8]
    Kawaguchi Y., Okamoto T., Taniwaki M. et al.:CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 8: 221–228, 1994.PubMedGoogle Scholar
  9. [9]
    Knight S.J.L., Flannery A.V., Hirst M.C. et al.:Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74: 127–134, 1993.PubMedGoogle Scholar
  10. [10]
    Kremer B.Goldberg Y.P., Andrew S.E. et al.:Worldwide study of the HD mutation: the sensitivity and specificity of CAG expansion. N. Engl. J. Med. 330: 1401–1406, 1993.Google Scholar
  11. [11]
    La Spada A.R., Wilson E.M., Lubahn D.B., Harding A.E., Fishbeck K.H.:Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77–79, 1991.PubMedGoogle Scholar
  12. [12]
    MacMillan J.C., Snell R.G., Tyler A. et al.:Molecular analysis and clinical correlations of the Huntington's disease mutation. Lancet 342: 954–958, 1993.PubMedGoogle Scholar
  13. [13]
    Mahadevan M., Tsifilidis C., Sabourin L. et al.:Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science 255: 1253–1255, 1991.Google Scholar
  14. [14]
    Myers R.H., MacDonald M.E. et al.:De novo expansion of a (CAG)n repeat in sporadic Huntington's disease. Nat. Genet. 5: 168–173, 1993.PubMedGoogle Scholar
  15. [15]
    Nagafuchi S., Yanagisawa H., Sato K. et al.:Expansion of an unstable CAG trinucleotide on chromosome 12p in dentatorubral pallidoluysian atrophy. Nat. Genet. 6: 14–18, 1994.PubMedGoogle Scholar
  16. [16]
    Orr H.T., Chung M., Banfi S. et al.:Expansion of an unstable tinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 4: 221–226, 1993.PubMedGoogle Scholar
  17. [17]
    Rubenzstein D.C., Amos W., Leggo J. et al.:Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nat. Genet. 7: 525–530, 1994.PubMedGoogle Scholar
  18. [18]
    Snell R.G., MacMillan J.C., Cheadle J.P. et al.:Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat. Genet. 4: 393–397, 1994.Google Scholar
  19. [19]
    Squitieri F., Andrew S.E., Goldberg Y.P. et al.:DNA haplotype analysis of Huntington's disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Hum. Mol. Genet. 3: 2103–2114, 1994.PubMedGoogle Scholar
  20. [20]
    Strong T.V., Tagle D., Valdes J.M. et al.:Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nat. Genet. 5: 259–265, 1993.PubMedGoogle Scholar
  21. [21]
    Telenius H., Kremer H.P.H., Theilmann J. et al.:Molecular analysis of juvenile Huntington's disease: the major influence on CAG repeat length is the sex of the affected parent. Hum. Mol. Genet. 2: 1535–1540, 1993.PubMedGoogle Scholar
  22. [22]
    Telenius H., Almqvist E., Kremer B. et al.:Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington's disease. Hum. Mol. Genet. 4: 189–195, 1995.PubMedGoogle Scholar
  23. [23]
    Bruyn G.W.,Huntington's chorea: Historical, clinical and laboratory synopsis. In: Vinken P.J. and Bruyn G.W. (Eds.), Handbook of Clinical Neurology, North Holland Publishing Company, Amsterdam, vol. 6, pp. 302, 1968.Google Scholar
  24. [24]
    World Federation of Neurology Research Committee:Research Group on Huntington's Chorea. Guidelines for the molecular genetics predictive test in Huntington's disease. J. Med. Genet. 31: 555–559, 1994.Google Scholar
  25. [25]
    Yu S., Pritchard M., Kremer E. et al.:Fragile X genotype characterized by an unstable region of DNA. Science 252: 1179–1181, 1991.Google Scholar

Copyright information

© Masson S.p.A 1996

Authors and Affiliations

  • Squitieri F. 
    • 1
  • Campanella G. 
    • 1
    • 2
  • Hayden M. R. 
    • 3
  1. 1.I.R.C.C.S. SanatrixPozzilli (IS)
  2. 2.Dipartimento di Scienze NeurologicheUniversità Federico IINapoliItaly
  3. 3.Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada

Personalised recommendations