BIT Numerical Mathematics

, Volume 32, Issue 2, pp 237–248 | Cite as

Finding thek smallest spanning trees

  • David Eppstein
Algorithm Theory


We give improved solutions for the problem of generating thek smallest spanning trees in a graph and in the plane. Our algorithm for general graphs takes timeO(m logβ(m, n)=k2); for planar graphs this bound can be improved toO(n+k2). We also show that thek best spanning trees for a set of points in the plane can be computed in timeO(min(k2n+n logn,k2+kn log(n/k))). Thek best orthogonal spanning trees in the plane can be found in timeO(n logn+kn log log(n/k)+k2).

C.R. categories

F.1.3 F.2.2 G.2.2 I.2.8 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor,A linear time algorithm for computing the Voronoi diagram of a convex polygon, Discrete and Comput. Geom. 4, 1989, 591–604.Google Scholar
  2. 2.
    A. Aggarwal, H. Imai, N. Katoh, and S. Suri,Finding k points with minimum diameter and related problems, J. Algorithms, to appear.Google Scholar
  3. 3.
    A. Aggarwal and J. Wein,Computational Geometry, MIT LCS Research Seminar Series 3, 1988.Google Scholar
  4. 4.
    M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan,Time bounds for selection, J. Comput. Syst. Sci. 7, 1972, 448–461.Google Scholar
  5. 5.
    H. Booth and J. Westbrook,Linear algorithms for analysis of minimum spanning and shortest path trees in planar graphs, Tech. Rep. TR-763, Department of Computer Science, Yale University, Feb. 1990.Google Scholar
  6. 6.
    R. N. Burns and C. E. Haff,A ranking problem in graphs, 5th Southeast Conf. Combinatorics, Graph Theory and Computing 19, 1974, 461–470.Google Scholar
  7. 7.
    P. M. Camerini, L. Fratta, and F. Maffioli,The k shortest spanning trees of a graph, Int. Rep. 73-10, IEEE-LCE Politechnico di Milano, Italy, 1974.Google Scholar
  8. 8.
    D. Cheriton and R. E. Tarjan,Finding minimum spanning trees, SIAM J. Comput. 5, 1976, 310–313.Google Scholar
  9. 9.
    L. P. Chew and S. Fortune,Sorting helps for Voronoi diagrams, 13th Symp. Mathematical Progr., Japan, 1988.Google Scholar
  10. 10.
    D. Eppstein,Offline algorithms for dynamic minimum spanning tree problems, 2nd Worksh. Algorithms and Data Structures, Springer Verlag LNCS 519, 1991, 392–399.Google Scholar
  11. 11.
    D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Italiano,Sparse dynamic programming, 1st ACM-SIAM Symp. Discrete Algorithms, San Francisco, 1990. 513–522.Google Scholar
  12. 12.
    D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung,Maintenance of a minimum spanning forest in a dynamic planar graph, 1st ACM-SIAM Symp. Discrete Algorithms, 1990, 1–11.Google Scholar
  13. 13.
    G. N. Frederickson,Data structures for on-line updating of minimum spanning trees, SIAM J. Comput. 14(4), 1985, 781–798.Google Scholar
  14. 14.
    G. N. Frederickson,Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees, 32nd IEEE Conf. Foundations of Computer Science, 1991, to appear.Google Scholar
  15. 15.
    H. N. Gabow,Two algorithms for generating weighted spanning trees in order, SIAM J. Comput. 6, 1977, 139–150.Google Scholar
  16. 16.
    H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan,Efficient algorithms for minimum spanning trees on directed and undirected graphs, Combinatorica 6, 1986, 109–122.Google Scholar
  17. 17.
    H. N. Gabow and M. Stallman,Efficient algorithms for graphic matroid intersection and parity, 12th Int. Conf. Automata, Languages, and Programming, Springer-Verlag LNCS 194, 1985, 210–220.Google Scholar
  18. 18.
    N. Katoh, T. Ibaraki, and H. Mine,An algorithm for finding k minimum spanning trees, SIAM J. Comput. 10, 1981, 247–255.Google Scholar
  19. 19.
    E. W. Mayr and C. G. Plaxton,On the spanning trees of weighted graphs, manuscript, 1990.Google Scholar
  20. 20.
    N. Sarnak and R. E. Tarjan,Planar point location using persistent search trees, C. ACM 29(7), 1986, 669–679.Google Scholar
  21. 21.
    R. E. Tarjan,Applications of path compression on balanced trees, J. ACM 26, 1979, 690–715.Google Scholar
  22. 22.
    P. van Emde Boas,Preserving order in a forest in less than logarithmic time, 16th IEEE Symp. Found. Comput. Sci., 1975, and Info. Proc. Lett. 6, 1977, 80–82.Google Scholar

Copyright information

© BIT Foundations 1992

Authors and Affiliations

  • David Eppstein
    • 1
  1. 1.Department of Information and Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations