BIT Numerical Mathematics

, Volume 32, Issue 2, pp 180–196

Approximating maximum independent sets by excluding subgraphs

  • Ravi Boppana
  • Magnús M. Halldórsson
Algorithm Theory

Abstract

An approximation algorithm for the maximum independent set problem is given, improving the best performance guarantee known toO(n/(logn)2). We also obtain the same performance guarantee for graph coloring. The results can be combined into a surprisingly strongsimultaneous performance guarantee for the clique and coloring problems.

The framework ofsubgraph-excluding algorithms is presented. We survey the known approximation algorithms for the independent set (clique), coloring, and vertex cover problems and show how almost all fit into that framework. We show that among subgraph-excluding algorithms, the ones presented achieve the optimal asymptotic performance guarantees.

CR Categories

F.2.2 G.2.2 

Keywords

Approximation algorithms independent sets graph coloring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ajtai, J. Komlós, and E. Szemerédi.A note on Ramsey numbers. J. Combin. Theory Ser A, 29: 354–360, 1980.Google Scholar
  2. 2.
    S. Arora and S. Safra.Approximating clique is NP-complete. Manuscript.Google Scholar
  3. 3.
    R. Bar-Yehuda and S. Even.A 2 — loglogn/2 logn performance ratio for the weighted vertex cover problem. Technical Report #260, Technion, Haifa, Jan. 1983.Google Scholar
  4. 4.
    B. Berger and J. Rompel.A better performance guarantee for approximate graph coloring. Algorithmica, 5 (4): 459–466, 1990.Google Scholar
  5. 5.
    P. Berman and G. Schnitger.On the complexity of approximating the independent set problem. Information and Computation, 96 (1): 77–94, Jan. 1992.Google Scholar
  6. 6.
    A. Blum.An O (n 4)approximation algorithm for 3-coloring. In Proc. 22nd Ann. ACM Symp. on Theory of Computing, pages 535–542, 1989. Submitted to J. ACM.Google Scholar
  7. 7.
    A. Blum.Some tools for approximate 3-coloring. In Proc. 31st Ann. IEEE Symp. on Found. of Comp. Sci., pages 554–562, Oct. 1990.Google Scholar
  8. 8.
    B. Bollobás.Random Graphs. Academic Press, 1985.Google Scholar
  9. 9.
    R. B. Boppana and M. M. Halldórsson.Approximating maximum independent sets by excluding subgraphs. In Proc. of 2nd Scand. Workshop on Algorithm Theory. Lecture Notes in Computer Science #447, pages 13–25. Springer-Verlag, July 1990.Google Scholar
  10. 10.
    V. Chvátal.Determining the stability number of a graph. SIAM J. Comput., 6 (4), Dec. 1977.Google Scholar
  11. 11.
    P. Erdös.Some remarks on chromatic graphs. Colloq. Math., 16: 253–256, 1967.Google Scholar
  12. 12.
    P. Erdös and G. Szekeres.A combinatorial problem in geometry. Compositio Math., 2: 463–470, 1935.Google Scholar
  13. 13.
    U. Feige, S. Goldwasser, L. Lovász, S. Safra and M. Szegedy.Approximating clique is almost NP-complete. In Proc. 32nd Ann. IEEE Symp. on Found. of Comp. Sci., pp. 2–12, Oct. 1991.Google Scholar
  14. 14.
    T. Gallai.Kritische graphen I. Publ. Math. Inst. Hungar. Acad. Sci., 8: 165–192, 1963. (See Bollobás, B.Extremal Graph Theory., Academic Press, 1978, page 285).Google Scholar
  15. 15.
    M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, 1979.Google Scholar
  16. 16.
    M. M. Halldórsson.A still better performance guarantee for approximate graph coloring. Technical Report 90-44, DIMACS, June 1990.Google Scholar
  17. 17.
    D. S. Johnson.Worst case behaviour of graph coloring algorithms. In Proc. 5th Southeastern Conf. on Combinatorics, Graph Theory, and Computing. Congressus Numerantium X, pages 513–527, 1974.Google Scholar
  18. 18.
    N. Linial and U. Vazirani.Graph products and chromatic numbers. In Proc. 30th Ann. IEEE Symp. on Found. of Comp. Sci., pages 124–128, 1989.Google Scholar
  19. 19.
    B. Monien and E. Speckenmeyer.Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Inf., 22: 115–123, 1985.Google Scholar
  20. 20.
    J. B. Shearer.A note on the independence number of triangle-free graphs. Discrete Math., 46: 83–87, 1983.Google Scholar
  21. 21.
    A. Wigderson.Improving the performance guarantee for approximate graph coloring. J. ACM, 30 (4): 729–735, 1983.Google Scholar
  22. 22.
    S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy.On the intractability of approximation problems. Manuscript.Google Scholar

Copyright information

© BIT Foundations 1992

Authors and Affiliations

  • Ravi Boppana
    • 1
    • 2
  • Magnús M. Halldórsson
    • 1
    • 2
  1. 1.Department of Computer ScienceNew York UniversityNew YorkUSA
  2. 2.School of Information ScienceJapan Advanced Institute of Science and Technology, HokurikuIshikawaJapan

Personalised recommendations