BIT Numerical Mathematics

, Volume 32, Issue 4, pp 546–558

Amortized analysis of some disk scheduling algorithms: SSTF, SCAN, andN-StepSCAN

  • Tung-Shou Chen
  • Wei-Pang Yang
  • R. C. T. Lee
Part I Computer Science

Abstract

The amortized analysis is a useful tool for analyzing the time-complexity of performing a sequence of operations. The disk scheduling problem involves a sequence of requests in general. In this paper, the performances of representative disk scheduling algorithms,SSTF, SCAN, andN-StepSCAN, are analyzed in the amortized sense. A lower bound of the amortized complexity for the disk scheduling problem is also derived. According to our analysis,SCAN is not only better thanSSTF andN-StepSCAN, but also an optimal algorithm. Various authors have studied the disk scheduling problem based on some probability models and concluded that the most acceptable performance is obtained fromSCAN. Our result therefore supports their conclusion.

CR categories

F.2.2 D.4.2 

Keywords

amortized analysis disk scheduling on-line problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Bentley and C. C. McGeoch,Amortized analyses of self-organizing sequential heuristics, Comm. ACM 28, No. 4 (1985), pp. 404–411.CrossRefGoogle Scholar
  2. 2.
    T. S. Chen, W. P. Yang and R. C. T. Lee,Amortized analyses of disk scheduling algorithms: SSTF and SCAN, Proc. of National Computer Symposium, Taiwan, R.O.C., (1989), pp. 831–836.Google Scholar
  3. 3.
    T. S. Chen and W. P. Yang,Amortized analysis for a continuum of disk scheduling V(R), Proc. of International Conference on Information and Systems, AMSE, Hangzhou, China, (1991), pp. 1277–1280.Google Scholar
  4. 4.
    E. G. Coffman, L. A. Klimko and B. Ryan,Analysis of scanning policies for reducing disc seek times, SIAM Journal on Computing, 1, (1972), pp. 269–279.CrossRefMATHGoogle Scholar
  5. 5.
    H. M. Deitel,Operating Systems (Second Edition), Addison-Wesley Publishing Co. Reading Mass., (1990).Google Scholar
  6. 6.
    P. J. Denning,Effects of scheduling on file memory operations, Proc. AFIPS, Montvale, N.J., (1967), pp. 9–21.Google Scholar
  7. 7.
    M. L. Fredman, R. Sedgewick, D. D. Sleator and R. E. Tarjan,The pairing heap: a new form of self-adjusting heap, Algorithmica No. 1 (1986), pp. 111–129.Google Scholar
  8. 8.
    H. Frank,Analysis and optimization of disk storage devices for time sharing systems, J. ACM 16, No. 4 (1969), pp. 602–620.CrossRefMATHGoogle Scholar
  9. 9.
    R. Geist and S. Daniel,A continuum of disk scheduling algorithms, ACM Trans. Computer Syst. 5, No. 1 (1987), pp. 77–92.CrossRefGoogle Scholar
  10. 10.
    E. F. Grove,The harmonic online k-server algorithm is competitive, In Proc. 23rd ACM Symposium on Theory of Computing, (1991), pp. 260–266.Google Scholar
  11. 11.
    M. Hofri,Disk scheduling FCFS vs. SSTF revisited, Comm. ACM 23, No. 11 (1980), pp. 645–653.CrossRefGoogle Scholar
  12. 12.
    R. C. T. Lee, R. C. Chang and S. S. Tseng,Introduction to the Design and Analysis of Algorithms, Prentice Hall, (1989).Google Scholar
  13. 13.
    M. Manasse, L. A. McGeoch and D. D. Sleator,Competitive algorithms for on-line problems, In Proc. 20th Annual ACM Symposium on Theory of Computing, (1988), pp. 322–333.Google Scholar
  14. 14.
    M. Manasse, L. A. McGeoch and D. D. Sleator,Competitive algorithms for server problems, Journal of Algorithms, 11 (1990), pp. 208–230.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    B. M. E. Moret and H. D. Shapior,Algorithms from P to NP, Volume I: Design and Efficiency, The Benjamin/Cummings Publishing Company, Inc. Redwood City, CA 94065 (1991).Google Scholar
  16. 16.
    P. W. Purdom, Jr. and C. A. Brown,The Analysis of Algorithms, CBS College Publishing, (1985).Google Scholar
  17. 17.
    A. Silberschatz and J. L. Peterson,Operating System Concepts, Addison-Wesley Publishing, Reading Mass., (1988), pp. 263.Google Scholar
  18. 18.
    D. D. Sleator and R. E. Tarjan,Self-adjusting binary search trees, J. Assoc. Comput. Mach. 32, No. 3 (1985), pp. 652–686.MATHMathSciNetGoogle Scholar
  19. 19.
    D. D. Sleator and R. E. Tarjan,Self-adjusting heaps, SIAM J. Comput. 15, No. 1 (1986), pp. 52–69.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    R. E. Tarjan,Data structure and network algorithms, Society for Industrial and Applied Mathematics, Philadelphia, Pa., (1983).Google Scholar
  21. 21.
    R. E. Tarjan,Amortized computational complexity, SIAM J. Alg. Disc. Math. 6, No. 2 (1985), 306–318.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    T. J. Teorey and T. B. Pinkerton,A comparative analysis of disk scheduling policies, Comm. ACM 15, No. 3 (1972), pp. 177–194.CrossRefMATHGoogle Scholar
  23. 23.
    N. C. Wilhelm,An anomaly in disk scheduling: a comparison of FCFS and SSTF seek scheduling using an empirical model for disk accesses, Comm. ACM 19, No. 1 (1976), 13–17.CrossRefMATHGoogle Scholar
  24. 24.
    W. P. Yang and T. S. Chen,The study of amortized complexity on disk system, Technical Report, NSC79-0408-E009-01, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., (1989).Google Scholar

Copyright information

© BIT Foundations 1992

Authors and Affiliations

  • Tung-Shou Chen
    • 1
    • 2
    • 3
  • Wei-Pang Yang
    • 1
    • 2
    • 3
  • R. C. T. Lee
    • 1
    • 2
    • 3
  1. 1.Department of Computer Science and Information EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC
  2. 2.Department of Computer and Information ScienceNational Chiao Tung UniversityHsinchuTaiwan, ROC
  3. 3.Department of Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan, ROC

Personalised recommendations