The Journal of Membrane Biology

, Volume 124, Issue 3, pp 265–273

Action potentials inAcetabularia: Measurement and simulation of voltage-gated fluxes

  • H. Mummert
  • D. Gradmann
Articles

Summary

Amounts and temporal changes of the release of the tracer ions K+ (86Rb+),22Na+, and36Cl as well as of H+ in the course of action potentials inAcetabularia have been recorded. New results and model calculations confirm in quantitative terms the involvement of three major ion transport systemsX in the plasmalemma: Cl pumps, K+ channels, and Cl channels (which are marked in the following by the prefixes,P, K andC) with their equilibrium voltagesXVe and voltage/time-dependent conductances, which can be described by the following, first approximation. Let the maximum (ohmic) conductance of each of the three populations of transporter species be about the same (PL,KL,CL=1) but voltage gating be different: the pump (pVe about −200 mV) being inactivated (open,o→closed,c) at positive going transmembrane voltages,Vm; the K+ channels (KVe about −100 mV) are inactivated at negative goingVm; and the Cl channels (CVe: around 0 mV), which are normally closed (c) at a restingVm (nearPVe) go through an intermediate open (o) state at more positiveVm before they enter a third “shut” state (s) in series. Model calculations, in which voltage sensitivities are expressed by the factorf=exp(VmF/(2RT)), simulate, the action potential fairly well with the following parameters (PKco∶10/f ks−1,PKoc∶1000·f ks−1,KKco∶200·f ks−1,Kkoc∶2/f ks−1,cKco∶500·f ks−1,CKoc∶5/f ks−1,CKso∶0.1/f ks−1,Ckos∶20·f ks−1). It is also shown that the charge balance for the huge transient Cl efflux, which frequently occurs during an action potential, can be accounted for by the observation of a corresponding release of Na+.

Key Words

Acetabularia action potential chloride channel excitation simulation transient fluxes voltage gating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beilby, M.J. 1982. Cl channels inChara.Phil. Trans. R. Soc. London B 299:435–445Google Scholar
  2. Bertl, A., Gradmann, D. 1987. Current-voltage relationships of potassium channels in the plasmalemma ofAcetabularia.J. Membrane Biol. 99:41–49Google Scholar
  3. Bertl, A., Klieber, H.-G., Gradmann, D. 1988. Slow kinetics of a potassium channel inAcetabularia.J. Membrane Biol. 102:141–152Google Scholar
  4. Freudling C., Gradmann, D. 1979. Cable properties and compartmentation inAcetabularia.Biochim. Biophys. Acta 552:358–365PubMedGoogle Scholar
  5. Goldfarb, V., Sanders, D., Gradmann, D. 1984. Reversal of electrogenic Cl pump inAcetabularia increases level and32P labelling of ATP.J. Exp. Bot. 35:645–658Google Scholar
  6. Gradmann, D. 1970. Einfluß von Licht, Temperatur und Außenmedium auf das elektrische Verhalten vonAcetabularia.Planta 93:323–353Google Scholar
  7. Gradmann, D. 1975. Analog circuit of theAcetabularia membrane.J. Membrane Biol. 25:183–208Google Scholar
  8. Gradmann, D. 1976. “Metabolic” action potentials inAcetabularia.J. Membrane Biol. 29:23–45Google Scholar
  9. Gradmann, D. 1989. ATP-driven chloride pump in giant algaAcetabularia.Methods Enzymol. 174:490–504Google Scholar
  10. Gradmann, D., Mummert, H. 1980. Plant action potentials.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. pp. 333–344. Elsevier, AmsterdamGoogle Scholar
  11. Gradmann, D., Mummert, H. 1984. Mechanism of Cl efflux bursts inAcetabularia: Vesicle releaseversus permeability transients.J. Membrane Biol. 78:81–82Google Scholar
  12. Gradmann, D., Wagner, G., Gläsel, R.M. 1973. Chloride efflux during light-triggered action potentials inAcetabularia mediterranea.Biochim. Biophys. Acta 323:151–155PubMedGoogle Scholar
  13. Mullins, L.J. 1962. Efflux of chloride ions during the action potential ofNitella.Nature 196:986–987PubMedGoogle Scholar
  14. Mummert, H. 1979. Transportmechanismen für K+, Na+ und Cl in stationären und dynamischen Zustäden beiAcetabularia. Ph.D. Thesis. University of Tübingen, TübingenGoogle Scholar
  15. Mummert, H., Gradmann, D. 1976. Voltage dependent potassium fluxes and the significance of action potentials inAcetabularia.Biochim. Biophys. Acta 443:443–450PubMedGoogle Scholar
  16. Mummert, H., Gradmann, D. 1980. Multi-channel Cl pathways inAcetabularia.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, and J. Dainty editors. pp. 439–440. Elsevier, AmsterdamGoogle Scholar
  17. Mummert, H., Gradmann, D. 1991. Ion fluxes inAcetabularia: Vesicular shuttle.J. Membrane Biol. 124:255–263Google Scholar
  18. Mummert, H., Hansen, U.-P., Gradmann, D. 1981. Current-voltage curve of electrogenic Cl pump predicts voltage-dependent Cl efflux inAcetabularia.J. Membrane Biol. 62:139–148Google Scholar
  19. Tittor, J., Hansen, U.-P., Gradmann, D. 1983. Impedance of the electrogenic Cl pump inAcetabularia: Electrical frequency entrainements, voltage-sensitivity, and reaction kinetic, interpretation.J. Membrane Biol. 75:129–139Google Scholar
  20. Wendler, S., Zimmermann, U., Bentrup, F.-W. 1983. Relationship between cell turgor pressure, electrical membrane potential, and chloride efflux inAcetabularia mediterranea.J. Membrane Biol. 72:75–84Google Scholar
  21. Wendler, S., Zimmermann, U., Bentrup, F.-W. 1984.Reply to: Mechanism of Cl efflux bursts inAcetabularia: Vesicle releaseversus permeability transients.J. Membrane Biol. 78:82–83Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • H. Mummert
    • 1
  • D. Gradmann
    • 1
  1. 1.Institut für Biologie I der UniversitätTübingenGermany
  2. 2.EdemannswischNorderwöhrdenGermany
  3. 3.Pflanzenphysiologisches Institut der UniversitätGöttingenGermany

Personalised recommendations