The Journal of Membrane Biology

, Volume 123, Issue 1, pp 63–71

Intracellular free zinc and zinc buffering in human red blood cells

  • T. J. B. Simons
Article

Summary

Zn2+ has been allowed to equilibrate across the red cell membrane using two agents that increase membrane permeability to this ion: the ionophore A23187 and the specific carrier ethylmaltol. Extracellular free Zn2+ was controlled with EGTA (1,2-di(2-aminoethoxy)ethane-NNN′N′tetra-acetic acid)) buffers, except in the case of ethylmaltol, which itself acts as a buffer. Measurement of cellular zinc content at different levels of free Zn2+ facilitated the study of intracellular Zn2+ binding. It was also possible to estimate intracellular free Zn2+ concentration in untreated cells using a “null-point” technique. Intracellular zinc was found to consist of an inexchangeable component of about 129 μmol/1013 cells and an exchangeable component of 6.7±1.5 μmol/1013 cells, with a free concentration of about 2.4×10−11m. The main component of Zn2+ buffering is hemoglobin, with a dissociation constant of about 2×10−8m.

Key Words

zinc erythrocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bettger, W.J., Taylor, C.G. 1986. Effects of copper and zinc status of rats on the concentration of copper and zinc in the erythrocyte membrane.Nutr. Res. 6:451–457Google Scholar
  2. Ferreira, H.G., Lew, V.L. 1976. Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca.Nature 259:47–49CrossRefPubMedGoogle Scholar
  3. Flatman, P.W., Lew, V.L. 1980. Magnesium buffering in intact human red blood cells measured using the ionophore A23187.J. Physiol. 305:13–30PubMedGoogle Scholar
  4. Foote, J.W., Delves, H.T. 1984. Albumin bound and α2-macroglubolin bound zinc concentrations in the sera of healthy adults.J. Clin. Pathol. 37:1050–1054PubMedGoogle Scholar
  5. Galdes, A., Vallee, B.L. 1983. Categories of zinc metalloenzymes.In: Metal Ions in Biological Systems. H. Sigel, editor.15:1–54, Marcel Dekker, New YorkGoogle Scholar
  6. Gilman, J.G., Brewer, G.J. 1978. The oxygen-linked zinc-binding site of human haemoglobin.Biochem. J. 169:625–632PubMedGoogle Scholar
  7. Giroux, E.L., Henkin, R.I. 1972. Competition for zinc among serum albumin and amino acids.Biochim. Biophys. Acta 273:64–72PubMedGoogle Scholar
  8. Grider, A., Bailey, L.B., Cousins, R.J. 1990. Erythrocyte metallothionein as an index of zinc status in humans.Proc. Natl. Acad. Sci. USA 87:1259–1262PubMedGoogle Scholar
  9. Harris, W.R., Keen, C. 1989. Calculations of the distribution of zinc in a computer model of human serum.J. Nutr. 119:1677–1682PubMedGoogle Scholar
  10. Hider, R.C., Ejim, L., Taylor, P.D., Gale, R., Huehms, E., Porter, J. 1990. Facilitated uptake of zinc into human erythrocytes. Relevance to the treatment of sickle-cell anaemia.Biochem. Pharmacol. 39:1005–1012CrossRefPubMedGoogle Scholar
  11. Kalfakakou, V., Simons, T.J.B. 1990. Anionic mechanisms of zinc uptake across the human red cell membrane.J. Physiol. 421:485–497PubMedGoogle Scholar
  12. Magneson, G.R., Puvathingal, J.M., Ray, W.J. 1987. The concentrations of free Mg2+ and free Zn2+ in equine blood plasma.J. Biol. Chem. 262:11140–11148PubMedGoogle Scholar
  13. Martell, A.E., Smith, R.M. 1974. Critical Stability Constants: Amino Acids. Vol. 1. Plenum, New YorkGoogle Scholar
  14. Martell, A.E., Smith, R.M. 1982. Critical Stability Constants: First Supplement. Vol. 5. Plenum, New YorkGoogle Scholar
  15. Ohno, H., Doi, R., Yamamura, K., Yamashita, K., Iizuka, S., Taniguchi, N. 1985. A study of zinc distribution in erythrocytes of normal humans.Blut 50:113–116CrossRefPubMedGoogle Scholar
  16. Peck, E.J., Ray, W.J. 1971. Metal complexes of phosphoglucomutase in vivo. Alterations induced by insulin.J. Biol. Chem. 246:1160–1167PubMedGoogle Scholar
  17. Pfeiffer, D.R., Lardy, H.A. 1976. Ionophore A23187: The effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187.Biochemistry 15:935–943CrossRefPubMedGoogle Scholar
  18. Rifkind, J.M., Heim, J.M. 1977. Interaction of zinc with hemoglobin: Binding of zinc and the oxygen affinity.Biochemistry 16:4438–4443CrossRefPubMedGoogle Scholar
  19. Scarpa, A., Brinley, F.J., Dubyak, G. 1978. Antipyrylazo III, a “middle range” Ca2+ metallochromic indicator.Biochemistry 17:1378–1386CrossRefPubMedGoogle Scholar
  20. Simons, T.J.B. 1987. Optical probes for Zn2+ ions.J. Physiol. 394:6PGoogle Scholar
  21. Simons, T.J.B. 1990. An approach to the estimation of free zinc in human red blood cells.J. Physiol. 423:47PGoogle Scholar
  22. Smith, R.M., Martell, A.E. 1989. Critical Stability Constants: Second Supplement. Vol. 6. Plenum, New YorkGoogle Scholar
  23. Tupper, R., Watts, R.W.E., Wormall, A. 1952. Some observations on the zinc in carbonic anhydrase.Biochem. J. 50:429–432Google Scholar
  24. Van Wouwe, J.P., Veldhuizen, M., DeGoeji, J.J.M., Van den Hamer, C.J.A. 1990. In vitro exchangeable erythrocytic zinc.Biol. Trace Element Res. 25:57–69Google Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • T. J. B. Simons
    • 1
  1. 1.Biomedical Sciences DivisionKing's College LondonLondon

Personalised recommendations