Skip to main content
Log in

Structure and properties of bread dough and crumb

Calorimetric, rheological and mechanical investigations on the effects produced by hydrocolloids, pentosans and soluble proteins

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The effects of hydrocolloids (guar and locust bean gums), soluble pentosans, and whey proteins on staling of bread crumb were investigated by means of DSC, rheometry, and image analyis. One current hypothesis, that these ingredients would behave as “water binders” and, at least the former two, as anti-staling agents, was indeed confirmed, although this action might be indirect. All the samples considered showed an exothermic DSC peak preceding the endotherm of the amylopectin fusion. According to a previous work, this signal was attributed to a water-dependent cross-linking process that would involve next-neighbouring polymer chains.

To check the effect produced by molecular modifications that were expected to increase the water uptake of these ingredients, doughs containing added succinylated pentosans and whey proteins, and a polycarboxylate polymer, PEMULEN TR-1, were examined. These modifications enhanced starch retrogradation and yielded a firmer crumb. It was tentatively concluded that some direct interaction between these modified molecules and the crumb polymers might have taken place.

In line with the food polymer science approach, the use of Time-Temperature-Transformation (TTT) diagrams is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Hoseney, K. J. Zeleznak and C. S. Lai, Cereal Chem., 63 (1986) 285.

    Google Scholar 

  2. L. Slade and H. Levine, Crit. Rev. Food Sci. Nutr., 30 (1991) 115.

    PubMed  Google Scholar 

  3. D. D. Christianson, J. E. Hodge, D. Osborne and P. W. Detroy Cereal Chem., 58 (1981) 513.

    Google Scholar 

  4. G. E. Attenburrow, D. J. Barnes, A. P. Davies and S. J. Ingman, J. Cereal Sci., 12 (1990) 1.

    Google Scholar 

  5. M. L. Martin and R. C. Hoseney, Cereal Chem., 68 (1991) 503.

    Google Scholar 

  6. M. Le Meste, V. T. Huang, J. Panama, G. Anderson and R. Lentz, Cereal Foods World, 37 (1992) 264.

    Google Scholar 

  7. L. Slade and H. Levine, J. Food Eng., 22 (1994) 143.

    Google Scholar 

  8. D. E. Rogers, K. J. Zeleznak and R. C. Hoseney, Cereal Chem., 65 (1988) 398.

    Google Scholar 

  9. M. L. Martin, K. J. Zeleznak and R. C. Hoseney, Cereal Chem., 68 (1991) 498.

    Google Scholar 

  10. A. Schiraldi, L. Piazza and M. Riva, Cereal Chem., 73 (1996) 32.

    Google Scholar 

  11. M. Gudmundsson, A.-C. Eliasson, S. Bengtsson and P. åman, Starch, 43 (1991) 5.

    Google Scholar 

  12. M. Michniewicz, C. G. Biliaderis and W. Bushuk, Cereal Chem., 68 (1991) 252.

    Google Scholar 

  13. B. L. D'Apollonia, and M. M. Morad, Cereal Chem., 58 (1981) 186.

    Google Scholar 

  14. S. K. Kim and B. L. D'Apollonia, Cereal Chem., 54 (1977) 150.

    Google Scholar 

  15. E. Mettler, W. Seibel, K. Münzing, U. Fast and K. Pfeilsticker, Getreide Mehl Brot, 46 (1992) 205.

    Google Scholar 

  16. E. Mettler, W. Seibel, J. M. Brummer and K. Pfeilsticker, Getreide Mehl Brot, 46 (1992) 43.

    Google Scholar 

  17. E. Mettler and W. Seibel, Cereal Chem., 70 (1993) 373.

    Google Scholar 

  18. E. Farkas and M. Glicksman, Food Technol., 21 (1967) 49.

    Google Scholar 

  19. M. Glicksman, in “Polysaccharides in Foods”, J. M. V. Blanshard and J. R. Mitchell, eds., Butterworths, London, U.K. 1979, p. 185.

    Google Scholar 

  20. F. M. Ward and S. A. Andon, Cereal Foods World, 38 (1993) 748.

    Google Scholar 

  21. N. Garti and D. Reichman, Food Structure; 12 (1993) 411.

    Google Scholar 

  22. J. Michniewicz, C. G. Biliaderis and W. Bushuk, Food Chem., 43 (1992) 251.

    Google Scholar 

  23. J. Longton and G. A. Le Grys, Starch, 33 (1981) 410.

    Google Scholar 

  24. M. Jankiewicz and J. Michniewicz, Food Chem., 25 (1987) 241.

    Google Scholar 

  25. O. Brenna, P. L. Gherardini and M. Rossi, Proc. XIV Int. Conf Groupe Polyphenols (JIEP 88), Bull. Liason Groupe Polyphenols, 14 (1988) 81.

    Google Scholar 

  26. P. Venzo, Graduation Thesis, University of Milan, Italy, 1993.

    Google Scholar 

  27. M. Riva and A. Schiraldi, Thermochim. Acta, 220 (1993) 117.

    Google Scholar 

  28. C. G. Biliaderis, T. J. Maurice and J. R. Vose, J. Food Sci., 45 (1980) 1669.

    Google Scholar 

  29. B. Zanoni, A. Schiraldi and R. Simonetta, J. Food Eng., 24 (1995) 25.

    Google Scholar 

  30. J. A. L. Da Silva and M. A. Rao, in “Viscoelastic Properties of Foods”, M. A. Rao and J. F. Steffe, eds., Elsevier, Barking, England, 1992, p. 285.

    Google Scholar 

  31. P. B. Fernandes, M. P. Goncalves and J. L. Doublier, Carbohydr. Polym., 16 (1991) 253.

    Google Scholar 

  32. M. Perego, graduation Thesis, University of Milan (1993).

  33. S. Cavella, L. Piazza and P. Masi, Ital. J. Food. Sci., 4 (1990) 235.

    Google Scholar 

  34. D. Weipert, Cereal Chem., 67 (1990) 311.

    Google Scholar 

  35. A. C. Eliasson, in “New Approaches to Research on Cereal Carbohydrates”, R. D. Hill and L. Munk, eds., Elsevier, Amsterdam 1985, p. 93.

    Google Scholar 

  36. K. J. Zeleznak and R. C. Hoseney, Starch, 39 (1987) 231.

    Google Scholar 

  37. Z. Czuchajowska and Y. Pomeranz, Cereal Chem., 66 (1989) 305.

    Google Scholar 

  38. A. Schiraldi and P. Rossi, in “Thermal Analysis”, B. Miller ed., John Wiley & Sons, Chichester, vol. II, 1982, p. 1151.

    Google Scholar 

  39. J. K. Gillham, in “The Role of Polymeric Matrix in the Processing and Structural Properties of Composite Materials”, J. C. Seferis and L. Nicolais, eds., Plenum, New York 1983 p. 127.

    Google Scholar 

  40. L. H. Sperling, “Introduction to Physical Polymer Science”, John Wiley & Sons, New York 1986.

    Google Scholar 

  41. A. Schiraldi, Thermochim. Acta, 96 (1985) 283.

    Google Scholar 

  42. A. Schiraldi, P. Baldini and E. Pezzati, J. Thermal Anal., 30 (1985) 1343.

    Google Scholar 

  43. A. Schiraldi, E. Pezzati and P. Baldini, Thermochim. Acta, 120 (1987) 315.

    Google Scholar 

  44. M. Riva and A. Schiraldi, Ital. J. Food Sci., 6 (1994) 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the National Research Council of Italy, Special Project RAISA, Sub-Project 4, Paper n. 2379.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiraldi, A., Piazza, L., Brenna, O. et al. Structure and properties of bread dough and crumb. Journal of Thermal Analysis 47, 1339–1360 (1996). https://doi.org/10.1007/BF01992832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01992832

Keywords

Navigation