Metabolic Brain Disease

, Volume 10, Issue 1, pp 31–44 | Cite as

Pathogenesis of diencephalic lesions in an experimental model of Wernicke's encephalopathy

  • Philip J. Langlais


The relationship of thiamine deficiency to Wernicke's encephalopathy has been well established. The biochemical bases and physiologic mechanisms responsible for the pathologic changes and their selective distribution within the brain remain controversial. The present paper reviews recent biochemical, histopathological and pharmacological evidence of a glutamate-mediated excitotoxic mechanism of neuronal loss in pyrithiamine-induced thiamine deficiency (PTD), a rat model of Wernicke's encephalopathy. A mechanistic model involving the unique combination of thiamine deficiency-induced impairment of energy metabolism, increased release of histamine, and multidirectional glutamate inputs is presented to explain the selective vulnerability of thalamic nuclei to excitotoxic lesions in the PTD model.

Key words

Thiamine deficiency thalamus excitotoxicity glutamate histamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe T., Sugihara H., Nawa H., Shigemoto R., Mizuno N. and Nakanishi S. (1992). Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction.J. Biol. Chem. 267:13361–13368.PubMedGoogle Scholar
  2. Aikawa H., Watanabe I.S., Furuse T., Iwasaki Y., Satoyoshi E., Sumi T. and Moroji T. (1984). Low energy levels in thiamine-deficient encephalopathy.J. Neuropathol. Exp. Neurol. 43:276–287.PubMedGoogle Scholar
  3. Aramori I. and Nakanishi S. (1992). Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells.Neuron 8:757–765.CrossRefPubMedGoogle Scholar
  4. Armstrong-James M., Ross D.T., Chen F. and Ebner F.F. (1988). The effect of thiamine deficiency on the structure and physiology of the rat forebrain.Metab. Brain Dis. 3:91–124.CrossRefPubMedGoogle Scholar
  5. Beal M.F. (1992). Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?Ann. Neurol. 31:119–130.CrossRefPubMedGoogle Scholar
  6. Beal M.F., Hyman B.T., and Koroshetz W. (1993). Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?TINS 16:125–131.PubMedGoogle Scholar
  7. Bekkers J. M. (1993). Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus.Science 261:104–106.PubMedGoogle Scholar
  8. Bennet C.D., Jones J.H., and Nelson J. (1966). The effects of thiamine deficiency on the metabolism of the brain. 1. Oxidation of various substrates in vitro by the liver and brain of normal and pyrithiamine-fed rats.J. Neurochem. 13:449–459.Google Scholar
  9. Blackstone C.D., Moss S.J., Martin L.J., Levey A.I., Price D.L. and Huganir R.L. (1992). Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain.J. Neurochem. 58:1118–1126.PubMedGoogle Scholar
  10. Blass J.P. (1979). Disorders of pyruvate metabolism.Neurology 29:280–286.PubMedGoogle Scholar
  11. Butters N. and Cermak L.S. (1980).Alcoholic Korsakoff's Syndrome. New York: Academic Press.Google Scholar
  12. Butterworth R.F. (1989). Effects of thiamine deficiency on brain metabolism: Implications for the pathogenesis of the Wernicke-Korsakoff syndrome.Alcohol and Alcoholism. 24:271–279.PubMedGoogle Scholar
  13. Butterworth R.F., Gaudreau C., Vincelette J., Bourgault A.M., Lamothe F., and Nutini A.M. (1991). Thiamine deficiency and Wernicke's Encephalopathy in AIDS.Metab. Brain Dis. 6:207–212.CrossRefPubMedGoogle Scholar
  14. Butterworth R.F., Giguere J.F. and Besnard A.M. (1986). Activities of thiamine-dependent enzymes in two experimental models of thiamine deficiency encephalopathy. 2. α-ketoglutarate dehydrogenase.Neurochem. Res. 11:567–577.CrossRefPubMedGoogle Scholar
  15. Calingasan N.Y., Baker H., Sheu K.-F.R. and Gibson G.E. (1994). Distribution of the α-ketoglutarate dehydrogenase complex in rat brain.J. Comp Neurol. 346:461–479.CrossRefPubMedGoogle Scholar
  16. Cha J.J.H., Makowiec R.L., Penney J.B. and Young A.B. (1992). Multiple states of rat brain (RS)-α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors as revealed by quantitative autoradiography.Molec. Pharmacol. 41:832–838.Google Scholar
  17. Choi D.W. (1992). Excitotoxic cell death.J. Neurobiol. 23:1261–1276.CrossRefPubMedGoogle Scholar
  18. Collins G.H. (1967). Glial cell changes in the brain stem of thiamine-deficient rats.Amer. J. Pathol. 50:791–814.Google Scholar
  19. Collins G.H. and Converse W.K. (1970). Cerebellar degeneration in thiamine-deficient rats.Amer. J. Pathol. 58:219–233.Google Scholar
  20. Collins R.C. and Olney J.W. (1982). Focal cortical seizures cause distant thalamic lesions.Science 218:177–179.PubMedGoogle Scholar
  21. Dreyfus P.M. and Victor M. (1961). Effects of thiamine deficiency on the central nervous system.Amer. J. Clin. Nutr. 9:414–425.PubMedGoogle Scholar
  22. Dyckner T., Ek B., Nyhlin H. and Wester P.O. (1985). Aggravation of thiamine deficiency by magnesium depletion.Acta Med. Scand. 218:129–131.PubMedGoogle Scholar
  23. Elin R.J. (1987). Assessment of magnesium status.Clin. Chem. 33:1965–1970.PubMedGoogle Scholar
  24. Erbsloh F. and Abel M. (1970).Handbook of Clinical Neurology, North-Holland Publishing Co, Amsterdam 7:558–571.Google Scholar
  25. Flink E.B. (1976). Magnesium deficiency and magnesium toxicity in man. In A. Prasad (Editor),Trace Elements in Human Health and Disease. Vol 2. New York, Academic Press.Google Scholar
  26. Flink L. (1986). Magnesium deficiency in Alcoholism.Alcoholism: Clin. Exp. Res. 10:590–594.Google Scholar
  27. Gibson G., Ksiezak-Reding H., Sheu K.F.R., Mykytyn V. and Blass J.P. (1984). Correlation of enzymatic, metabolic and behavioral deficits in thiamine deficiency and its reversal.Neurochem. Res. 9:803–814.CrossRefPubMedGoogle Scholar
  28. Goto I., Nagara H., Tateishi J. and Kuroiwa Y. (1986). Thiamine-deficient encephalopathy in rats: Effects of deficiencies of thiamine and magnesium.Brain Res. 372:31–36.CrossRefPubMedGoogle Scholar
  29. Gubler C.J. (1961). Studies on the physiological functions of thiamine. 1. The effects of thiamine deficiency and thiamine antagonists on the oxidation of α-keto acids by rat tissues.J. Biol. Chem. 236:3112–3120.PubMedGoogle Scholar
  30. Hakim A.M. (1984). The induction and reversibility of cerebral acidosis in thiamine deficiency.Ann. Neurol. 16:673–679.CrossRefPubMedGoogle Scholar
  31. Hakim A.M. and Pappius H.M. (1983). Sequence of metabolic, clinical, and histological events in experimental thiamine deficiency.Ann. Neurol. 13:365–375.CrossRefPubMedGoogle Scholar
  32. Hazell A.S., Butterworth R.F. and Hakim A.M. (1993). Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency.J. Neurochem. 61:1155–1158.PubMedGoogle Scholar
  33. Henneberry R.L., Novelli A., Cox J.A., and Lysko P.G. (1989). Neurotoxicity at the NMDA receptor in energy-compromised neurons. An Hypothesis for cell death in aging and disease.Ann. NY Acad. Sci. 568:225–233.PubMedGoogle Scholar
  34. Ikonomidou C., Price M.T., Mosinger J.L. and Olney J.W. (1989). Hypobaric-ischemic conditions produce glutamate-like cytopathology in infant rat brain.J. Neurosci. 9:1693–1700.PubMedGoogle Scholar
  35. Inagaki N., Yamatodani A., Ando-Yamamoto M., Tohyama M., Watanabe T. and Wada H. (1988). Organization of histaminergic fibers in the rat brain.J. Comp. Neurol. 273:283–300.CrossRefPubMedGoogle Scholar
  36. Irle E. and Markowitsch H.J. (1982). Thiamine deficiency in the cat leads to severe learning deficits and to widespread neuroanatomical damage.Exp. Brain Res. 48:199–208.CrossRefPubMedGoogle Scholar
  37. Jellinger K. and Seitelberger F. (1970). Subacute necrotizing encephalomyelopathy. In Mehilmeyer I., Muller A.F., Prader A. and Schoen R. (eds).Ergebuisse Der Innerren Medizin und Kinderkeikunde. Springer-Verlag, Berlin-Heidelberg, New York, pp. 155–219.Google Scholar
  38. Kauppinen R.A., McMahon H.T., and Nicholls D.G. (1988). Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: possible relevance to hypoglycaemia and anoxia.Neuroscience 27:175–182.CrossRefPubMedGoogle Scholar
  39. Langlais P.J. (1992). Role of diencephalic lesions and thiamine deficiency in Korsakoff's amnesia: Insights from animal models. In LR Squire & N. Butters (Eds),Neuropsychology of Memory, New York: The Guilford Press, pp. 440–450.Google Scholar
  40. Langlais P.J. and Mair R.G. (1990). Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain.J. Neurosci. 10:1664–1674.PubMedGoogle Scholar
  41. Langlais P.J. and Savage L.M. (1995). Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex, and white matter.Behav. Brain. Res. (in press).Google Scholar
  42. Langlais P.J., Mandel R.J. and Mair R.G. (1992). Diencephalic lesions, learning impairments, and intact retrograde memory following acute thiamine deficiency in the rat.Behav. Brain Res. 48:177–185.PubMedGoogle Scholar
  43. Langlais P.J. and Zhang S.X. (1993). Extracellular glutamate is increased in thalamus during thiamine deficiency-induced lesions and is blocked by MK-801.J. Neurochem. 61:2175–2182.PubMedGoogle Scholar
  44. Langlais P.J., Zhang S.X., Weilersbacher G., Hough L.B. and Barke K.E. (1994). Histamine-mediated neuronal death in a rat model of Wernicke's Encephalopathy.J. Neurosci. Res. 38:565–574.CrossRefPubMedGoogle Scholar
  45. Lowry O.H. and Passonneau J.V. (1964). The relationships between substrates and enzymes of glycolysis in brain.J. Biol. Chem. 239:31–41.PubMedGoogle Scholar
  46. Mair R.G., Knoth R.L., Rabchenuk S.A. and Langlais P.J. (1991a). Impairment of olfactory, auditory, and spatial serial reversal learning in rats recovered from pyrithiamine-induced thiamine deficiency.Behav. Neurosci. 105:360–374.CrossRefPubMedGoogle Scholar
  47. Mair R.G., Otto T.A., Knoth R.L., Rabchenuk S.A. and Langlais P.J. (1991b). An analysis of aversively reinforced learning in rats recovered from pyrithiamine-induced thiamine deficiency.Behav. Neurosci. 105:351–359.CrossRefPubMedGoogle Scholar
  48. Martin L.J., Blackstone C.D., Jugani R.L. and Price D.L. (1992). Cellular localization of a metabotropic glutamate receptor in rat brain.Neuron 9:259–270.CrossRefPubMedGoogle Scholar
  49. McCandless D.W. and Schenker S. (1968). Encephalopathy of thiamine deficiency: Studies of intracerebral mechanisms.J. Clin. Invest. 47:2268–2280.PubMedGoogle Scholar
  50. McCormick D.A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex.J. Clin. Neurophysiol. 9:212–223.PubMedGoogle Scholar
  51. McCormick D.A. and Von Krosigk M. (1992). Corticothalamic activation modulates thalamic firing through glutamate ‘metabotropic’ receptors.Proc. Natl. Acad. Sci. USA 89:2774–2778.PubMedGoogle Scholar
  52. Morris M.E. (1992). Brain and CSF magnesium concentrations during magnesium deficit in animals and human: Neurological symptoms.Magnesium Res. 5:303–313.Google Scholar
  53. Nakanishi H., Kamata O., Ukai K. and Yamamoto K. (1991). Inhibitory effects of NMDA receptor antagonists on hypoxia-induced seizures in dietary Mg2+-deficient mice.Eur. J. Pharmacol. 204:29–34.CrossRefPubMedGoogle Scholar
  54. Novelli A., Reilly J.A., Lysko P.G. and Henneberry R.C. (1988). Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced.Brain Res. 451:205–212.CrossRefPubMedGoogle Scholar
  55. Olney J.W. (1986). Inciting excitotoxic cytocide among central neurons. In R Schwarcz & Y Ben-Ari (Eds),Excitatory amino acids and Epilepsy. Plenum, NY, pp. 631–645.Google Scholar
  56. Olney J.W. (1989). Excitatory amino acids and neuropsychiatric disorders.Biol. Psychiatry 26:505–525.CrossRefPubMedGoogle Scholar
  57. Olney J.W. (1971). Glutamate-induced neuronal necrosis in the infant mouse hypothalamus: An electronmicroscopic study.J. Neuropathol. Exp. Neurol. 30:75–90.PubMedGoogle Scholar
  58. Olney J.W., Sharpe L.G. and Feigin R.D. (1972). Glutamate-induced brain damage in infant primates.J. Neuropathol. Exp. Neurol. 31:464–488.PubMedGoogle Scholar
  59. Onodera K., Maeyama K. and Watanabe T. (1989). The increase of histamine levels in the amygdala caused by histidine administration and the suppression of muricide in thiamine deficient rats.Agents and Actions 27:120–122.PubMedGoogle Scholar
  60. Oscar-Berman M., Zola-Morgan S.M., Oberg R.G.E. and Bonner R.T. (1982). Comparative neuropsychology and Korsakoff's syndrome. III: Delayed response, delayed alternation and DRL performance.Neuropsychologia 20(2):187–202.CrossRefPubMedGoogle Scholar
  61. Panula P., Pirvola U., Auvinen S. and Airaksinen M. (1989). Histamine-immunoreactive nerve fibers in the rat brain.Neuroscience 28:585–610.CrossRefPubMedGoogle Scholar
  62. Panula P., Tuomisto L., Karhunen T., Sarviharju M., and Korpi E.R. (1992). Increased neuronal histamine in thiamine-deficient rats.Agents and Actions (spec Conf Issue) C:354–357.CrossRefGoogle Scholar
  63. Papp M., Tarczy M., Takatas A., Auguszt A., Komoly S. and Tulok I. (1981). Symmetric central thalamic necrosis in experimental thiamine deficient encephalopathy.Acta Neuropathol. (Berl.) Suppl. VII:48–49.Google Scholar
  64. Petralia R.S. and Wenthold R.J. (1992). Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain.J. Comp. Neurol. 318:329–354.CrossRefPubMedGoogle Scholar
  65. Rindi G. and Perri V. (1961). Uptake of pyrithiamine by tissue in rats.Biochem. J. 80:214–216.PubMedGoogle Scholar
  66. Robertson D.M., Wasan S.M. and Skinner D.B. (1968). Ultrastructural features of early brainstem lesions of thiamine deficient rats.Am. J. Pathol. 52:1081–1097.PubMedGoogle Scholar
  67. Robinson J.K. and Mair R.G. (1992). MK-801 prevents brain lesions and delayed-nonmatching-to-sample deficits produced by pyrithiamine-induced encephalopathy in rats.Behav. Neurosci. 106:623–633.CrossRefPubMedGoogle Scholar
  68. Rose S.E., Nixon P., Zelaya F., Wholohan B., Zimitat C., Moxon N., Crozier S., Brereton I. and Doddrell D. (1993). Application of high field localizedin vivo 1H MRS to study biochemical changes in the thiamine deficient rat brain under glucose load.NMR in Biomedicine 6:324–328.PubMedGoogle Scholar
  69. Salt T.E. and Eaton S.A. (1991). Excitatory actions of the metabotropic excitatory amino acid receptor agonist,trans-(±)-1-amino-cyclopentane-1,3-dicarboxylate (t-ACPD), on rat thalamic neuronsin vivo.Eur. J. Neurosci. 3:1044–1111.Google Scholar
  70. Tellez I. and Terry R.D. (1968). Fine structure of the early changes in the vestibular nuclei of the thiamine deficient rat.Am. J. Pathol. 52:774–794.Google Scholar
  71. Traviesa D.C. (1974). Magnesium deficiency: A possible cause of thiamine refractoriness in Wernicke-Korsakoff encephalopathy.J. Neurol. Neurosurg. Psychiat. 37:959–962.PubMedGoogle Scholar
  72. Troncoso J.C., Johnston M.V., Hess K.M., Griffin J.W. and Price D.L. (1981). Model of Wernicke's encephalopathy.Arch. Neurol. 38:350–354.PubMedGoogle Scholar
  73. Turski L. and Turski W.A. (1993). Towards an understanding of the role of glutamate in neurodegenerative disorders: Energy metabolism and neuropathology.Experientia 49:1064–1072.CrossRefPubMedGoogle Scholar
  74. Vogel S., and Hakim A.M. (1988). Effect of nimodipine on the regional cerebral acidosis accompanying thiamine deficiency in the rat.J. Neurochem. 51:1102–1110.PubMedGoogle Scholar
  75. Victor M., Adams R.D. and Collins G.H. (1971).The Wernicke-Korsakoff Syndrome: A Clinical and Pathological Study of 245 Patients, 82 with Post-Mortem Examinations. F.A. Davis: Philadelphia.Google Scholar
  76. Vink R., McIntosh T.K., Demidiuk P., Weiner M.W. and Faden A.I. (1989). Decline in intracellular free Mg2+ is associated with irreversible tissue injury after brain trauma.J. Biol. Chem. 263:757–759.Google Scholar
  77. Vorobjev S., Sharonova I.N., Walsh I.B. and Haas H.L. (1993). Histamine potentiates N-methyl-D-aspartate responses in acutely isolated hippocampal neurons.Neuron 11:837–844.CrossRefPubMedGoogle Scholar
  78. Watanabe I., Tomita T., Hung K.S. and Iwasaki Y. (1981). Edematous necrosis in thiamine-deficient encephalopathy of the mouse.J. Neuropathol. Exp. Neurol. 40:454–471.PubMedGoogle Scholar
  79. Watanabe I. and Kanabe S. (1978). Early edematous lesion of pyrithiamine induced acute thiamine-deficient encephalopathy of mouse.J. Neuropathol. Exp. Neurol. 37:401–413.PubMedGoogle Scholar
  80. Witt E.D. (1985). Neuroanatomical consequences of thiamine deficiency: A comparative analysis.Alcohol & Alcoholism,20:201–221.Google Scholar
  81. Zhang S.X., Weilersbacher G.S., Henderson S.W., Corso T., Olney J.W. and Langlais P.J. (1995). Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions.J. Neuropathol. Exp. Neurol. 54:255–267.PubMedGoogle Scholar
  82. Zieve L. (1975). Role of cofactors in the treatment of malnutrition as exemplified by magnesium.Yale J. Biol. Med. 48:229–237.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Philip J. Langlais
    • 1
  1. 1.Department of PsychologySan Diego State UniversitySan DiegoUSA

Personalised recommendations