BIT Numerical Mathematics

, Volume 33, Issue 3, pp 473–484

Fast inversion of vandermonde-like matrices involving orthogonal polynomials

  • D. Calvetti
  • L. Reichel
Part II Numerical Mathematics

DOI: 10.1007/BF01990529

Cite this article as:
Calvetti, D. & Reichel, L. BIT (1993) 33: 473. doi:10.1007/BF01990529

Abstract

Let {q}j=0n−1 be a family of polynomials that satisfy a three-term recurrence relation and let {tk}k=1n be a set of distinct nodes. Define the Vandermonde-like matrixWn=[wjk]k,j=1n,wjk=qj−1(tk). We describe a fast algorithm for computing the elements of the inverse ofWn inO(n2) arithmetic operations. Our algorithm generalizes a scheme presented by Traub [22] for fast inversion of Vandermonde matrices. Numerical examples show that our scheme often yields higher accuracy than the LINPACK subroutine SGEDI for inverting a general matrix. SGEDI uses Gaussian elimination with partial pivoting and requiresO(n3) arithmetic operations.

AMS(MOS) Subject classification

65F05 65D05 65D30 

Key words

Vandermonde matrix inverse fast algorithm Leja ordering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© the BIT Foundation 1993

Authors and Affiliations

  • D. Calvetti
    • 1
  • L. Reichel
    • 2
  1. 1.Department of Pure and Applied MathematicsStevens Institute of TechnologyHoboken
  2. 2.Department of Mathematics and Computer ScienceKent State UniversityKent

Personalised recommendations