, Volume 39, Issue 11, pp 1221–1231 | Cite as

Incorporation of xenobiotics into soil humus

  • J. -M. Bollag
  • M. J. Loll


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizawa, H., Metabolic maps of pesticides. Academic Press, New York 1982.Google Scholar
  2. 2.
    Ambrosi, D., Kearney, P. C., and Macchia, J. A., Persistence and metabolism of oxadiazon in soils. J. agric. Fd Chem.25 (1977) 868–872.Google Scholar
  3. 3.
    Ambrosi, D., Kearney, P. C., and Macchia, J. A., Persistence and metabolism of phosalone in soil. J. agric. Fd Chem.25 (1977) 342–347.Google Scholar
  4. 4.
    Ballard, T. M., Role of humic carrier substances in DDT movement through forest soil. Soil Sci. Soc. Amer. Proc.35 (1971) 145–147.Google Scholar
  5. 5.
    Bartha, R., Fate of herbicide-derived chloroanilines in soil. J. agric. Fd Chem.19 (1971) 385–387.Google Scholar
  6. 6.
    Bartha, R., Pesticide residues in humus. ASM News46 (1980) 356–360.Google Scholar
  7. 7.
    Bartha, R., and Pramer, D., Pesticide transformation to aniline and azo compounds in soil. Science156 (1967) 1617–1618.PubMedGoogle Scholar
  8. 8.
    Best, J. A., Weber, J. B., and Weed, S. B., Competitive adsorption of diquat2+, paraquat2+, and Ca2+ on organic matter and exchange resins. Soil Sci.114 (1972) 444–450.Google Scholar
  9. 9.
    Boehm, P. D., and Quinn, J. G., Solubilization of hydrocarbons by the dissolved organic matter in sea water. Geochim. cosmochim. Acta37 (1973) 2459–2477.Google Scholar
  10. 10.
    Bollag, J.-M., Cross-coupling of humus constituents and xenobiotic substances, in: Aquatic and Terrestrial Humic Materials. pp. 127–141. Eds. R. F. Christman and E. T. Gjessing. Ann Arbor Sci. Pub., Ann Arbor, Michigan 1983.Google Scholar
  11. 11.
    Bollag, J.-M., Blattman, P., and Laanio, T., Adsorption and transformation of four substituted anilines in soil. J. agric. Fd Chem.26 (1978) 1302–1306.Google Scholar
  12. 12.
    Bollag, J.-M., and Liu, S.-Y., Degradation of sevin by soil microorganisms. Soil Biol. Biochem.3 (1971) 337–345.Google Scholar
  13. 13.
    Bollag, J.-M., and Liu, S.-Y., Incorporation of pentachlorophenol into humic acid polymers by a fungal laccase. American Society for Microbiology, Annual Meeting 1983.Google Scholar
  14. 14.
    Bollag, J.-M., Liu, S.-Y., and Minard, R. D., Asymmetric diphenol formation by a fungal laccase. Appl. environ. Microbiol.38 (1979) 90–92.PubMedGoogle Scholar
  15. 15.
    Bollag, J.-M., Liu, S.-Y., and Minard, R. D., Cross-coupling of phenolic humus constituents and 2,4-dichlorophenol. Soil Sci. Soc. Am. J.44 (1980) 52–56.Google Scholar
  16. 16.
    Bollag, J.-M., Liu, S.-Y., and Minard, R. D., Enzymatic oligomerization of vanillic acid. Soil Biol. Biochem.14 (1982) 157–163.Google Scholar
  17. 17.
    Bollag, J.-M., Minard, R. D., and Liu, S.-Y., Cross-linkage between anilines and phenolic humus constituents. Environ. Sci. Technol.17 (1983) 72–80.Google Scholar
  18. 18.
    Bollag, J.-M., Sjoblad, R. D., and Minard, R. D., Polymerization of phenolic intermediates of pesticides by a fungal enzyme. Experientia33 (1977) 1564–1566.PubMedGoogle Scholar
  19. 19.
    Bondietti, E., Martin, J. P., and Haider, K., Stabilization of amino sugar units in humic-type polymers. Soil Sci. Soc. Amer. Proc.36 (1972) 597–602.Google Scholar
  20. 20.
    Bordeleau, L. M., and Bartha, R., Biochemical transformation of herbicide-derived anilines: requirements of molecular configuration. Can. J. Microbiol.18 (1972) 1873–1882.PubMedGoogle Scholar
  21. 21.
    Bordeleau, L. M., and Bartha, R., Biochemical transformations of herbicide-derived anilines in culture medium and in soil. Can. J. Microbiol.18 (1972) 1857–1864.PubMedGoogle Scholar
  22. 22.
    Brady, N. C., The nature and properties of soils. 8th edn. MacMillan Publishing Co, New York 1974.Google Scholar
  23. 23.
    Burns, I. G., Hayes, M. H. B., and Stacey, M., Some physicochemical interactions of paraquat with soil organic materials and model compounds. I. Effects of temperature, time and adsorbate degradation on paraquat adsorption. Weed Res.13 (1973) 67–78.Google Scholar
  24. 24.
    Burns, I. G., Hayes, M. H. B., and Stacey, M., Some physicochemical interactions of paraquat with soil organic materials and model compounds. II. Adsorption and desorption equilibria in aqueous suspensions. Weed Res.13 (1973) 79–90.Google Scholar
  25. 25.
    Carringer, R. D., Weber, J. B., and Monaco, T. J., Adsorptiondesorption of selected pesticides by organic matter and montmorillonite. J. Agric. Fd Chem.23 (1975) 568–572.Google Scholar
  26. 26.
    Carter, C. W., and Suffet, I. H., Bonding of DDT to humic materials. Environ. Sci. Technol.16 (1982) 735–740.Google Scholar
  27. 27.
    Chisaka, H., and Kearney, P. C., Metabolism of propanil in soil. J. agric. Fd Chem.18 (1970) 854–859.Google Scholar
  28. 28.
    Choi, W. W., and Chen, K. Y., Associations of chlorinated hydrocarbons with fine particles and humic substances in nearshore surficial sediments. Environ. Sci. Technol.10 (1976) 782–786.Google Scholar
  29. 29.
    Cortez, J., and Schnitzer, M., Nucleic acid bases in soil and their association with organic and inorganic soil components Can. J. Soil Sci.59 (1979) 277–286.Google Scholar
  30. 30.
    Damanakis, M., Drennan, D. S. H., Fryer, J. D., and Holly, K. The adsorption and mobility of paraquat on different soils and soil constituents. Weed Res.10 (1970) 264–277.Google Scholar
  31. 31.
    Felbeck, G. T., Jr., Chemical and biological characterization of humic matter, in: Soil Biochemistry, vol. 2, pp. 36–59. Eds A. D. McLaren and J. Skujins. Marcel Dekker, New York 1971.Google Scholar
  32. 32.
    Flaig, W., Beutelspacher, H., and Rietz, E., Chemical conposition and physical properties of humic substances. in: Soil Components, vol. 1, pp. 1–211. Ed. J. E. Gieseking, Springer, New York 1975.Google Scholar
  33. 33.
    Führ, F., and Mittelstaedt, W., Plant experiments on the bioavailability of unextracted (carboxyl-14C) methabenzthiazuron residues from soil. J. agric. Fd Chem.28 (1980) 122–125.Google Scholar
  34. 34.
    Fuhremann, T. W., and Lichtenstein, E. P., Release of soilbound methyl [14C] parathion residues and their uptake by earthworms and oat plants. J. agric. Fd Chem.26 (1978) 605–610.Google Scholar
  35. 35.
    Gaillardon, P., Calvet, R., and Gaudry, J. C., Adsorption de quelques phénylurées herbicides par des acides humiques. Weed Res.20 (1980) 201–204.Google Scholar
  36. 36.
    Golab, T., and Althaus, W. A., Transformation of isopropalin in soil and plants. Weed Sci.23 (1975) 165–171.Google Scholar
  37. 37.
    Golab, T., Althaus, W. A., and Wooten, H. L., Fate of [14C] trifluralin in soil. J. agric. Fd Chem.27 (1979) 163–179.Google Scholar
  38. 38.
    Golab, T., Bishop, C. E., Donoho, A. L., Manthey, J. A., and Zornes, L. L., Behavior of14C oryzalin in soil and plants. Pestic. Biochem. Physiol.5 (1975) 196–204.Google Scholar
  39. 39.
    Golab, T., Herberg, R. J., Gramlich, J. V., Raun, A. P., and Probst, G. W., Fate of benefin in soils, plants, artificial rumen fluid and the ruminant animal. J. agric. Fd Chem.18 (1970) 838–844.Google Scholar
  40. 40.
    Green, R. E., Pesticide-clay-water interactions, in: Pesticides in Soil and Water, pp. 3–37. Ed. W. D. Guenzi. American Society of Agronomy. Madison, Wisconsin 1974.Google Scholar
  41. 41.
    Haider, K., Martin, J. P., and Filip, Z., Humus biochemistry, in: Soil Biochemistry, vol. 4, pp. 195–244. Eds E. A. Paul and A. D. McLaren. Marcel Dekker, New York 1975.Google Scholar
  42. 42.
    Hamaker, J. W., and Goring, C. I., Turnover of pesticide residues in soil, in: Bound and Conjugated Pesticide Residues, pp. 219–243. Eds D. D. Kaufman, G. G. Still, G. D. Paulson and S. K. Bandal, Am. Chem. Soc., Washington, D. C. 1976.Google Scholar
  43. 43.
    Hance, R. J., The adsorption of linuron, atrazine, and EPTC by model aliphatic adsorbents and soil organic preparations. Weed Res.9 (1969) 108–113.Google Scholar
  44. 44.
    Hance, R. J., Complex formation as an adsorption mechanism for linuron and atrazine. Weed Res.11 (1971) 106–110.Google Scholar
  45. 45.
    Haque, K., and Schmedding, D., Studies on the adsorption of selected polychlorinated biphenyl isomers on several surfaces. J. environ. Sci. HealthB 11 (1976) 129–137.PubMedGoogle Scholar
  46. 46.
    Hayes, M. H. B., Adsorption of triazine herbicides on soil organic matter, including a short review on soil organic matter chemistry. Res. Rev.31 (1970) 131–174.Google Scholar
  47. 47.
    Helling, C. S., Dinitroaniline herbicides in soils. J. environ. Qual.5 (1976) 1–15.Google Scholar
  48. 48.
    Helling, C. S., and Krivonak, A. E., Physicochemical characteristics of bound dinitroaniline herbicides in soils. J. agric. Fd Chem.26 (1978) 1156–1163.Google Scholar
  49. 49.
    Helling, C. S., and Krivonak, A. E., Biological characteristics of bound dinitroaniline herbicides in soils. J. agric. Fd Chem.26 (1978) 1164–1172.Google Scholar
  50. 50.
    Hiraizumi, Y., Takahashi, M., and Nishimura, H., Adsorption of polychlorinated biphenyl onto sea bed sediment, marine plankton, and other adsorbing agents. Environ. Sci. Technol.13 (1979) 580–584.Google Scholar
  51. 51.
    Hitchings, E. J., and Roberts, T. R., Degradation of the herbicide flamprop-isopropyl in soil under laboratory conditions. Pestic. Sci.10 (1979) 1–13.Google Scholar
  52. 52.
    Hsu, T.-S., and Bartha, R., Biodegradation of chloroanilinehumus complexes in soil and in culture solution. Soil Sci.118 (1974) 213–220.Google Scholar
  53. 53.
    Hsu, T.-S., and Bartha, R., Interaction of pesticide-derived chloroaniline residues with soil organic matter. Soil Sci.116 (1974) 444–452.Google Scholar
  54. 54.
    Hsu, T.-S., Bartha, R., Hydrolyzable and nonhydrolyzable 3,4-dichloroaniline humus complexes and their respective rates of biodegradation. J. agric. Fd Chem.24 (1976) 118–122.Google Scholar
  55. 55.
    Kaplan, D. L., and Kaplan, A. M., Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl. environ. Microbiol.44 (1982) 757–760.PubMedGoogle Scholar
  56. 56.
    Katan, J., Fuhremann, T. W., and Lichtenstein, E. P., Binding of (14C) parathion in soil: a reassessment of pesticide persistence. Science193 (1976) 891–894.PubMedGoogle Scholar
  57. 57.
    Katan, J., and Lichtenstein, E. P., Mechanisms of production of soil-bound residues of (14C) parathion by microorganisms. J. agric. Fd. Chem.25 (1977) 1404–1408.Google Scholar
  58. 58.
    Kaufman, D. D., Bound and conjugated pesticide residues, in: Bound and Conjugated Pesticide Residues, pp. 1–10. Eds D. D. Kaufman, G. G. Still, G. D. Paulson and S. K. Bandall. Am. Chem. Soc., Washington, D.C. 1976.Google Scholar
  59. 59.
    Kazano, H., Kearney, P. C., and Kaufman, D. D., Metabolism of methylcarbamate insecticides in soils. J. agric. Fd Chem.20 (1972) 975–979.Google Scholar
  60. 60.
    Khan, S. U., Interaction of bipyridylium herbicides with organo-clay complex. J. Soil Sci.24 (1973) 244–248.Google Scholar
  61. 61.
    Khan, S. U., Adsorption of bipyridylium herbicides by humic acid. J. environ. Qual.3 (1974) 202–206.Google Scholar
  62. 62.
    Khan, S. U., The interaction of organic matter with pesticides, in: Soil organic matter, pp. 138–171. Eds M. Schnitzer and S. U. Khan. Elsevier Scientific Publishing Co., New York 1978.Google Scholar
  63. 63.
    Khan, S. U., Plant uptake of unextracted (bound) residues from an organic soil treated with prometryn. J. agric. Fd Chem.28 (1980) 1096–1098.Google Scholar
  64. 64.
    Khan, S. U., Distribution and characteristics of bound residues of prometryn in an organic soil. J. agric. Fd Chem.30 (1982) 175–179.Google Scholar
  65. 65.
    Khan, S. U., and Hamilton, H. A., Extractable and bound (nonextractable) residues of prometryn and its metabolites in an organic soil. J. agric. Fd Chem.28 (1980) 126–132.Google Scholar
  66. 66.
    Khan, S. U., and Ivarson, K. C., Microbiological release of unextracted (bound) residues from an organic soil treated with prometryn. J. agric. Fd Chem.29 (1981) 1301–1303.Google Scholar
  67. 67.
    Khan, S. U., and Schnitzer, M., The retention of hydrophobic organic compounds by humic acid. Geochim. cosmochim. Acta36 (1972) 745–754.Google Scholar
  68. 68.
    Larson, R. A., and Hufnal, J. M., Jr., Oxidative polymerization of dissolved phenols by soluble and insoluble organic species. Limnol. Oceanogr.25 (1980) 505–512.Google Scholar
  69. 69.
    Lee, M. C., Griffin, R. A., Miller, M. L., and Chian, E. S. K., Adsorption of water-soluble polychlorinated biphenyl aroclor 1242 and used capacitor fluid by soil materials and coal chars. J. environ. Sci. HealthA 14 (1979) 415–442.Google Scholar
  70. 70.
    Lichtenstein, E. P., Katan, J., and Anderegg, B. N., Binding of ‘persistent’ and ‘nonpersistent’14C-labeled insecticides in an agricultural soil. J. agric. Fd Chem.25 (1977) 43–47.Google Scholar
  71. 71.
    Lichtenstein, E. P., Liang, T. T., and Koeppe, M. K., Effects of fertilizers, captafol, and atrazine on the fate and translocation of [14C] fonofos and [14C] parathion in a soil-plant microcosm. J. agric. Fd Chem.30 (1982) 871–878.Google Scholar
  72. 72.
    Liu, S.-Y., Minard, R. D., and Bollag, J.-M., Coupling reactions of 2,4-dichlorophenol with various anilines. J. agric. Fd Chem.29 (1981) 253–257.Google Scholar
  73. 73.
    Liu, S.-Y., Minard, R. D., and Bollag, J.-M., Oligomerization of syringic acid, a lignin derivative, by a phenoloxidase. Soil Sci. Soc. Am. J.45 (1981) 1100–1105.Google Scholar
  74. 74.
    Loll, M. J., and Bollag, J.-M., Protein transformation in soil. Adv. Agron.36 (1983) 351–382.Google Scholar
  75. 75.
    Loos, M. A., Phenoxyalkanoic acids, in: Degradation of herbicides, pp. 1–49. Eds P. C. Kearney and D. D. Kaufman. Marcel Dekker, New York 1969.Google Scholar
  76. 76.
    McGlamery, M. D., and Slife, F. W., The adsorption and desorption of atrazine as affected by pH, temperature, and concentration. Weeds14 (1966) 237–239.Google Scholar
  77. 77.
    Martin, J. P., Haider, K., and Wolf, D., Synthesis of phenols and phenolic polymers byHendersonula toruloidea in relation to humic acid formation. Soil Sci. Soc. Amer. Proc.36 (1972) 311–315.Google Scholar
  78. 78.
    Mathur, S. P., Characterization of soil humus through enzymatic degradation. Soil Sci.111 (1972) 147–157.Google Scholar
  79. 79.
    Mathur, S. P., and Morley, H. V., A biodegradation approach for investigating pesticide incorporation into soil humus. Soil Sci.120 (1975) 238–240.Google Scholar
  80. 80.
    Mathur, S. P., and Morley, H. V., Incorporation of methoxychlor-14C in model humic acids prepared from hydroquinone. Bull. environ. Contam. Toxic.20 (1978) 268–274.Google Scholar
  81. 81.
    Matsuda, K., and Schnitzer, M., Reactions between fulvic acid, a soil humic material, and dialkyl phthalates. Bull. environ. Contam. Toxic.6 (1973) 200–203.Google Scholar
  82. 82.
    Minard, R. D., Liu, S.-Y., and Bollag, J.-M., Oligomers and quinones from 2,4-dichlorophenol. J. agric. Fd Chem.29 (1981) 250–253.Google Scholar
  83. 83.
    Mortland, M. M., Pyridinium-montmorillonite complexes with ethylN, N-di-n-propylthiolcarbamate (EPTC). J. agric. Fd Chem.16 (1968) 706–707.Google Scholar
  84. 84.
    Mortland, M. M., and Halloran, L. J., Polymerization of aromatic molecules on smectite. Soil Sci. Soc. Am. J.40 (1976) 367–370.Google Scholar
  85. 85.
    Moza, P., Schneunert, I., Klein, W., and Korte, F., Studies with 2,4′,5-trichlorobiphenyl-14C and 2,2′,4,4′,6-pentachlorobiphenyl-14C in carrots, sugar beets, and soil. J. agric. Fd Chem.27 (1979) 1120–1124.Google Scholar
  86. 86.
    Mulla, M. S., Mian, L. S., and Kawecki, J. A., Distribution, transport and fate of the insecticides malathion and parathion in the environment. Residue Rev.81 (1981) 1–172.PubMedGoogle Scholar
  87. 87.
    Murthy, N. B., and Kaufman, D. D., Degradation of pentachloronitrobenzene (PCNB) in anaerobic soils. J. agric. Fd Chem.26 (1978) 1151–1156.Google Scholar
  88. 88.
    Musso, H., Phenol coupling, in: Oxidative coupling of phenols, pp. 1–94. Eds W. I. Taylor and A. R. Battersby. Marcel Dekker, New York 1967.Google Scholar
  89. 89.
    Parr, J. F., and Smith, S., Degradation of trifluralin under laboratory conditions and soil anaerobiosis. Soil Sci.115 (1973) 55–63.Google Scholar
  90. 90.
    Parris, G. E., Covalent binding of aromatic amines to humates. I. Reactions with carbonyls and quinones. Environ. Sci. Technol.14 (1980) 1099–1106.Google Scholar
  91. 91.
    Parris, G. E., Environmental and metabolic transformations of primary aromatic amines and related compounds. Residue Rev.76 (1980) 1–30.PubMedGoogle Scholar
  92. 92.
    Peeper, T. F., and Weber, J. B., Activity and persistence of atrazine, procyazine and VEL 5026 as influenced by soil organic matter and clay. Proc. south. Weed Sci. Soc.29 (1976) 387–398.Google Scholar
  93. 93.
    Pierce, R. H., Olney, C. E., and Felbeck, G. T., Pesticide adsorption in soils and sediments. Environ. Lett.1 (1971) 157–172.PubMedGoogle Scholar
  94. 94.
    Pierce, R. H., Olney, C. E., and Felbeck, G. T., pp′-DDT adsorption to suspended particulate matter in sea water. Geochim. cosmochim. Acta38 (1974) 1061–1073.Google Scholar
  95. 95.
    Pillai, P., Helling, C. S., and Dragun, J., Soil-catalyzed oxidation of aniline. Chemosphere11 (1982) 299–317.Google Scholar
  96. 96.
    Poirrier, M. A., Bordelon, B. R., and Laseter, J. L., Adsorption and concentration of dissolved carbon-14 DDT by coloring colloids in surface waters. Environ. Sci. Technol.6 (1972) 1033–1035.Google Scholar
  97. 97.
    Pritchard, M. K., and Stobbe, E. H., Persistence and phytotoxicity of dinitroaniline herbicides in Manitoba soils. Can. J. Pl. Sci.60 (1980) 5–11.Google Scholar
  98. 98.
    Probst, G. W., Golab, T., Herberg, R. J., Holzer, F. J., Parka, S. J., Van der Schans, C., and Tepe, J. B., Fate of trifluralin in soils and plants. J. agric. Fd Chem.15 (1967) 592–599.Google Scholar
  99. 99.
    Rahman, A., and Matthews, J. L., Effect of soil organic matter on the phytotoxicity of thirteen s-triazene herbicides. Weed Sci.27 (1979) 158–161.Google Scholar
  100. 100.
    Riley, D., Wilkinson, W., and Tucker, B. V., Biological unavailability of bound paraquat residues in soil, in: Bound and conjugates pesticide residues, ACS Symposium Series29 (1976) 301–353. Eds D. D. Kaufman, G. G. Still, G. D. Paulson and S. K. Bandal.Google Scholar
  101. 101.
    Roberts, T. R., and Standen, M. E., Further studies of the degradation of the pyrethroid insecticide cypermethrin in soils. Pestic. Sci.12 (1981) 285–296.Google Scholar
  102. 102.
    Schnitzer, M., Humic substances: chemistry and reactions, in: Soil organic matter, pp. 1–64. Eds M. Schnitzer and S. U. Khan. Elsevier Scientific Publishing Co., New York 1978.Google Scholar
  103. 103.
    Schnitzer, M., and Khan, S. U., Humic substances in the environment. Marcel Dekker Inc., New York 1972.Google Scholar
  104. 104.
    Senesi, N., and Testini, C., Adsorption of some nitrogenated herbicides by soil humic acids. Soil Sci.130 (1980) 314–320.Google Scholar
  105. 105.
    Sjoblad, R. D., and Bollag, J.-M., Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Appl. environ. Microbiol.33 (1977) 906–910.PubMedGoogle Scholar
  106. 106.
    Sjoblad, R. D., and Bollag, J.-M., Oxidativé coupling of aromatic coupounds by enzymes from soil microorganisms, in: Soil Biochemistry, vol. 5, pp. 113–152. Eds E. A. Paul and J. N. Ladd. Marcel Dekker. New York 1981.Google Scholar
  107. 107.
    Sjoblad, R. D., Minard, R. D., and Bollag, J.-M., Polymerization of 1-naphthol and related phenolic compounds by an extracellular fungal enzyme. Pestic. Biochem. Physiol.6 (1976) 457–463.Google Scholar
  108. 108.
    Spillner, C. J., DeBaun, J. R., and Menn, J. J., Degradation of fenitrothion, in forest soil and effects on forest soil microbes. J. agric. Fd Chem.27 (1979) 1054–1060.Google Scholar
  109. 109.
    Steelink, C., and Tollin, G., Free radicals in soil, in: Soil Biochemistry, pp. 147–169. Eds A. D. McLaren and G. H. Peterson. Marcel Dekker, New York 1967.Google Scholar
  110. 110.
    Stevenson, F. J., Role and function of humus in soil with emphasis on absorption of herbicides and chelation of microorganisms. Bioscience22 (1972) 643–650.Google Scholar
  111. 111.
    Stevenson, F. J., Organic matter reactions involving pesticides in soil, in: Bound and conjugated pesticide residues. ACS Symposium Series29 (1976) 180–207. Eds D. D. Kaufman, G. G. Still, G. D. Paulson and S. K. Bandal.Google Scholar
  112. 112.
    Stevenson, F. J., Humus chemistry: genesis, compoition, reactions. Wiley-Interscience, New York 1982.Google Scholar
  113. 113.
    Still, C. C., Hsu, T.-S., and Bartha, R., Soil-bound 3,4-dichloroaniline: source of contamination in rice grain. Bull. environ. Contam. Toxic.24 (1980) 550–554.Google Scholar
  114. 114.
    Strek, H. J., and Weber, J. B., Adsorption and reduction in bioactivity of polychlorinated biphenyl (Aroclor 1254) to redroot pigweed by soil organic matter and montmorillonite clay. Soil Sci. Soc. Am. J.46 (1982) 318–322.Google Scholar
  115. 115.
    Strek, H. J., and Weber, J. B., Behavior of polychlorinated biphenyls (PCBs) in soils and plants. Environ. Pollut.A 28 (1982) 291–312.Google Scholar
  116. 116.
    Süss, A., and Grampp, B., Die Aufnahme von Adsorbiertem Monolinuron im Boden durch Senfpflanzen. Weed Res.13 (1973) 254–266.Google Scholar
  117. 117.
    Van Alfen, N. K., and Kosuge, T., Metabolism of the fungicide 2,6-dichloro-4-nitroaniline in soil. J. agric Fd Chem.24 (1976) 584–588.Google Scholar
  118. 118.
    Viswanathan, R., Scheunert, I., Kohli, J., Klein, W., and Korte, F., Long-term studies on the fate of 3,4-dichloroaniline-14C in a plant-soil system under outdoor conditions. J. environ. Sci. HealthB 13 (1978) 243–259.Google Scholar
  119. 119.
    Waksman, S. A., and Iyer, K. R. N., Contribution to our knowledge of the chemical nature and origin of humus: I. On the synthesis of the ‘humus nucleus’. Soil Sci.34 (1932) 43–69.Google Scholar
  120. 120.
    Wang, T. S. C., and Li, S. W., Clay minerals as heterogeneous catalysts in preparation of model humic substances. Z. Pfl Ernähr. Düng. Bodenk.140 (1977) 669–676.Google Scholar
  121. 121.
    Wang, T. S. C., Li, S. W., and Ferng, Y. L., Catalytic polymerization of phenolic compounds by clay minerals. Soil Sci.126 (1978) 15–21.Google Scholar
  122. 122.
    Weber, J. B., Adsorption of buthidazone, VEL 3510, tebuthiuron, and fluridone by organic matter, montmorillonite clay, exchange resins, and a sandy loam soil. Weed Sci.28 (1980) 478–483.Google Scholar
  123. 123.
    Weber, J. B., Weed, S. B., and Ward, T. M., Adsorption ofs-triazines by soil organic matter. Weed Sci.17 (1969) 417–421.Google Scholar
  124. 124.
    Weed, S. B., and Weber, J. B., The effect of cation exchange capacity on the retention of diquat and paraquat by three-layer type clay minerals. I. Adsorption and release. Soil Sci. Soc. Am. Proc.33 (1969) 379–382.Google Scholar
  125. 125.
    Wheeler, W. B., Stratton, G. D., Twilley, R. R., Ou, L.-T., Carlson, D. A., and Davidson, J. M., Trifluralin degradation and binding in soil. J. agric. Fd Chem.27 (1979) 702–706.Google Scholar
  126. 126.
    Wolf, D. C., and Martin, J. P., Decomposition of fungal mycelia and humic-type polymers containing carbon-14 from ring and side-chain labeled 2,4-D and chlorpropham. Soil Sci. Soc. Am. Proc.40 (1976) 700–704.Google Scholar
  127. 127.
    You, I.-S., and Bartha, R., Stimulation of 3,4-dichloroaniline mineralization by aniline. Appl. environ. Microbiol.44 (1982) 678–681.PubMedGoogle Scholar
  128. 128.
    You, I.-S., Jones, R. A., and Bartha, R., Evaluation of a chemically defined model for the attachment of 3,4-dichloroaniline to humus. Bull. environ. Contam. Toxic.29 (1982) 476–482.Google Scholar

Copyright information

© Birkhäuser Verlag 1983

Authors and Affiliations

  • J. -M. Bollag
    • 1
  • M. J. Loll
    • 1
  1. 1.Laboratory of Soil Microbiology, Department of AgronomyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations