BIT Numerical Mathematics

, Volume 33, Issue 1, pp 74–84

The stability of rational approximations of analytic semigroups

  • M. Crouzeix
  • S. Larsson
  • S. Piskarev
  • V. Thomée
Part II Numerical Mathematics

Abstract

It is shown thatA-acceptable and, more generally,A(θ)-arational approximations of bounded analytic semigroups in Banach space are stable. The result applies, in particular, to the Crank-Nicolson method.

1980 Mathematics Subject Classification (1985 Revision)

65J10 65M12 

Key words and phrases

Analytic semigroup Banach space rational approximation A-acceptable A(θ)-acceptable stability  Crank-Nicolson method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Brenner and V. Thomée,Stability and conver gence rates in L p for certain difference schemes, Math. Scand. 27 (1970), 5–23.Google Scholar
  2. 2.
    P. Brenner and V. Thomée,On rational approximation of semigroups, SIAM J. Numer. Anal. 16 (1979), 683–694.Google Scholar
  3. 3.
    P. Brenner, V. Thomée and L. B. Wahlbin,Besov Spaces and Applications to Difference Methods for Initial Value Problems, Lecture Notes in Mathematics, Vol. 434, Springer-Verlag, 1975.Google Scholar
  4. 4.
    M. Crouzeix,On multistep approximation of semigroups in Banach spaces, J. Comput. Appl. Math. 20 (1987), 25–35.Google Scholar
  5. 5.
    R. deLaubenfels,Inverses of operators, Proc. Amer. Math. Soc. 104 (1988), 443–448.Google Scholar
  6. 6.
    R. deLaubenfels,Powers of generators of holomorphic semigroups, Proc. Amer. Math. Soc. 99 (1987), 105–108.Google Scholar
  7. 7.
    H. Fujita and T. Suzuki,Evolution Problems, Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part 1) (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, 1991, pp. 789–928.Google Scholar
  8. 8.
    S. Larsson, V. Thomée and L. B. Wahlbin,Finite element methods for a strongly damped wave equation, IMA J. Numer. Anal. 11 (1991), 115–142.Google Scholar
  9. 9.
    M.-N. Le Roux,Semidiscretization in time for parabolic problems, Math. Comp. 33 (1979), 919–931.Google Scholar
  10. 10.
    C. Palencia,A stability result for sectorial operators in Banach spaces, report 1991/4, Departamento de Matemática Aplicada y Computación, Universidad de Valladolid.Google Scholar
  11. 11.
    A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, 1983.Google Scholar
  12. 12.
    S. Piskarev,Error estimates for approximation of semigroups of operators by Padé fractions, Soviet Math. (Iz. VUZ) 23 (1979), 31–36.Google Scholar
  13. 13.
    F. Riesz and B. Sz.-Nagy,Leçons d'Analyse Fonctionelle, deuxième édition, Académie des Sciences de Hongrie, Budapest, 1953.Google Scholar
  14. 14.
    P. E. Sobolevskij and Huang Van Lai,Difference schemes of optimal type for approximation of solutions of parabolic equations, Differential and Integro-Differential Equations, Novosibirsk, 1977, 37–43. (Russian)Google Scholar
  15. 15.
    G. Wanner, E. Hairer and S. P. Nørsett,Order stars and stability theorems, BIT 18 (1978), 475–489.Google Scholar

Copyright information

© BIT Foundations 1993

Authors and Affiliations

  • M. Crouzeix
    • 1
  • S. Larsson
    • 2
  • S. Piskarev
    • 2
  • V. Thomée
    • 2
  1. 1.Institut Mathématique et IRISAUniversité de Rennes IRennes CedexFrance
  2. 2.Department of MathematicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations