BIT Numerical Mathematics

, Volume 33, Issue 2, pp 232–237 | Cite as

On crossing numbers of hypercubes and cube connected cycles

  • Ondrej Sýkora
  • Imrich Vrťo
Part I Computer Science


We prove tight bounds for crossing numbers of hypercube and cube connected cycles (CCC) graphs.

CR Categories

F.1.2 G.2.2 

Key Words

crossing number cube connected cycles hypercube lower bound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brebner, G.,Relating routing graphs and two dimensional array grids, In: Proc. VLSI:Algorithms and Architectures, North Holland, 1985.Google Scholar
  2. 2.
    Erdös, P. and Guy, R. P.,Crossing number problems, American Mathematical Monthly, 80, 1, 1973, 52–58.Google Scholar
  3. 3.
    Harary, F., Hayes, J. P. and Horng-Jyh Wu,A survey of the theory of hypercube graphs, Computers and Mathematics with Applications, 15, 4, 1988, 277–289.Google Scholar
  4. 4.
    Heath, M. I. (editor),Hypercube Multicomputers, Proceedings of the 2-nd Conference on Hypercube Multicomputers, SIAM, 1987.Google Scholar
  5. 5.
    Kainen, P. C.,A lower bound for crossing numbers of graphs with applications to K n,K p,q, andQ(d), J. Combinatorial Theory (B), 12, 1972, 287–298.Google Scholar
  6. 6.
    Kleitman, D. J.,The crossing number of K 5,n, J. of Combinatorial Theory 9, 1971, 315–323.Google Scholar
  7. 7.
    Leighton, F. T.,New lower bound techniques for VLSI, In: Proc. 22-nd Annual IEEE Symposium on Foundations of Computer Science, 1981, 1–12.Google Scholar
  8. 8.
    Leiserson, C. E.,Area efficient graph layouts (for VLSI), In: Proc. 21-st Annual IEEE Symposium on Foundations of Computer Science, 1980, 270–281.Google Scholar
  9. 9.
    Madej, T.,Bounds for the crossing number of the N-cube, J. Graph Theory, 15, 1991, 81–97.Google Scholar
  10. 10.
    Preparata, F. P. and Vuillemin, J. E.,The cube-connected cycles: a versatile network for parallel computation, In: Proc. 20-th Annual IEEE Symposium on Foundations of Computer Science, 1979, 140–147.Google Scholar
  11. 11.
    Shahrokhi, F. and Székely, L. A.,An algebraic approach to the uniform concurrent multicommodity flow problem: theory and applications, Tech. Rep. CRPDC-91-4, Dept. Comp. Sci., Univ. North Texas, 1991.Google Scholar
  12. 12.
    Shahrokhi, F. and Székely, L. A.,Effective lower bounds for crossing number, bisection width and balanced vertex separators in terms of symmetry, In: Proc. 2-nd IPCO Conference, Pittsburgh, 1992.Google Scholar

Copyright information

© BIT Foundation 1993

Authors and Affiliations

  • Ondrej Sýkora
    • 1
  • Imrich Vrťo
    • 1
  1. 1.Institute for InformaticsSlovak Academy of SciencesBratislavaCzecho-Slovakia

Personalised recommendations