Journal of Insect Behavior

, Volume 8, Issue 2, pp 269–279

Female mating behavior in the field cricket,Gryllus pennsylvanicus (Orthoptera: Gryllidae) at different operational sex ratios

  • Konstantine Souroukis
  • Anne-Marie Murray
Article

Abstract

The influence of operational sex ratio on the mating behavior of female field crickets,Gryllus pennsylvanicus, was investigated. Females were predicted to be more discriminating under conditions of high mate availability and show less selectivity when males were rare. Such selectivity was indicated in this study with the proportion of courtships leading to a mating changing with sex ratio. Females accepted almost 70% of all courtships at the female-biased sex ratio, but only about half of all courtships were successful at even or male-biased sex ratios. Females moved least at the female-biased sex ratio. There was also a trend for females to be guarded more under male-biased conditions. Female weight did not influence any of the behaviors examined.

Key words

mating behavior sex ratio mate choice Gryllus pennsylvanicus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R. D. (1961). Aggressiveness, territoriality, and sexual behaviour in field crickets (Orthoptera: Gryllidae).Behaviour 17 130–223.Google Scholar
  2. Alexander, R. D., and Meral, G. H. (1967). Seasonal and daily chirping cycles in the northern spring and fall field crickets,Gryllus veletis andG. pennylsvanicus.Ohio J. Sci. 67 200–209.Google Scholar
  3. Alexander, R. D., and Otte, D. (1967). The evolution of genitalia and mating behavior in crickets (Gryllidae) and other Orthoptera. Miscellaneous Publications No. 133, University of Michigan Museum of Zoology, Ann Arbor.Google Scholar
  4. Arnold, S. J., and Halliday, T. (1988). Multiple mating: Natural selection is not evolution.Anim. Behav. 36 1547–1548.Google Scholar
  5. Arnqvist, G. (1989). Multiple mating in a water strider: Mutual benefits or intersexual conflict?Anim. Behav. 38 749–756.Google Scholar
  6. Arnqvist, G. (1992a). Precopulatory fighting in a water strider: Intersexual conflict or mate assessment?Anim. Behav. 43 559–569.Google Scholar
  7. Arnqvist, G. (1992b). The effects of operational sex ratio on the relative mating success of extreme male phenotypes in the water striderGerris odontogaster (Zett.) (Heteroptera: Gerridae).Anim. Behav. 43 681–683.Google Scholar
  8. Backus, V. L., and Cade, W. H. (1986). Sperm competition in the field cricketGryllus integer (Orthoptera: Gryllidae).Fla. Entomol. 69 722–728.Google Scholar
  9. Cade, W. H. (1975). Acoustically orienting parasitoids: Fly phonotaxis to cricket song.Science 190 1312–1313.Google Scholar
  10. Cade, W. H. (1989). Nightly and hourly rates of attraction of flying field crickets,Gryllus integer, to conspecific song.Can. J. Zool. 67 2540–2542.Google Scholar
  11. Cade, W. H., and Wyatt, D. R. (1984). Factors affecting calling behaviour in field crickets,Teleogryllus andGryllus (age, weight, density, and parasites).Behaviour 88 61–75.Google Scholar
  12. Clark, S. J. (1988). The effects of operational sex ratio and food deprivation on copulation duration in the water strder (Gerris remigis Say).Behav. Ecol. Sociobiol. 23 317–322.Google Scholar
  13. French, B. W., and Cade, W. H. (1987). The timing of calling, movement, and mating in the field cricketsGryllus veletis, G. pennsylvanicus andG. integer.Behav. Ecol. Sociobiol. 21 157–162.Google Scholar
  14. French, B. W., and Cade, W. H. (1989). Sexual selection at varying population densities in male field crickets,Gryllus veletis andG. pennsylvanicus.J. Insect Behav. 2 105–121.Google Scholar
  15. French, B. W., McGowan, E. J., and Backus, V. L. (1986). Spatial distribution of calling field crickets,Gryllus pennsylvanicus (Bigelow) (Orthoptera; Gryllidae).Fla. Entomol. 69 255–257.Google Scholar
  16. Gwynne, D. T. (1985). Role reversal in katydids: Habitat influences reproductive behaviour (Orthoptera; Tettigoniidae,Metaballus spp.).Behav. Ecol. Sociobiol. 16 355–361.Google Scholar
  17. Gwynne, D. T. (1990). Testing parental investment and the control of sexual selection in katydids: The operational sex ratio.Am. Nat. 136 474–484.Google Scholar
  18. Loher, W. (1981). The effect of mating on female sexual behavior ofTeleogryllus commodus Walker.Behav. Ecol. Sociobiol. 9 219–225.Google Scholar
  19. Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects.Biol. Rev. 45 525–567.Google Scholar
  20. Ridley, M. (1988). Mating frequency and fecundity in insects.Biol. Rev. 63 509–549.Google Scholar
  21. Rowe, L. (1992). Convenience polyandry in a water strider: Foraging conflicts and female control of copulation frequency and guarding duration.Anim. Behav. 44 189–202.Google Scholar
  22. Sakaluk, S. K. (1991). Post-copulatory mate guarding in decorated crickets.Anim. Behav. 41 207–216.Google Scholar
  23. Sakaluk, S. K., and Belwood, J. J. (1984). Gecko phontaxis to cricket calling song: a case of satellite predation.Anim. Behav. 32 659–662.Google Scholar
  24. Sakaluk, S. K., and Cade, W. H. (1980). Female mating frequency and progeny production in singly and doubly mated house crickets.Can. J. Zool. 58 404–411.Google Scholar
  25. Sakaluk, S. K., and Cade, W. H. (1983). The adaptive significance of female multiple mating in house and field crickets. In Gwynne, D., and Morris, G. K. (eds.),Orthopteran Mating Systems: Sexual Selection in a Diverse Group of Insects. Westview Press, Boulder, CO, pp. 319–336.Google Scholar
  26. Schatral, A. (1993). Diet influences male-female interactions in the bushcricketRequena verticalis (Orthoptera; Tettigoniidae).J. Insect Behav. 6 379–388.Google Scholar
  27. Shelly, T. E., and Bailey, W. J. (1992). Experimental manipulation of mate choice by male katydids: The effects of female encounter rate.Behav. Ecol. Sociolbiol. 30 277–282.Google Scholar
  28. Sherman, P. W., and Westneat, D. F. (1988). Multiple mating and quantitative genetics.Anim. Behav. 36 1545–1546.Google Scholar
  29. Sih, A., Krupa, J., and Travers, S. (1990). An experimental study on the effects of predation risk and feeding regime on the mating behaviour of the water strider.Am. Nat. 135 284–290.Google Scholar
  30. Simmons, L. W. (1986). Female choice in the field cricket,Gryllus bimaculatus (De Geer).Anim. Behav. 34 1463–1470.Google Scholar
  31. Simmons, L. W. (1987). Sperm competition as a mechanism of female choice in the field cricket,Gryllus bimaculatus.Behav. Ecol. Sociobiol. 21 197–202.Google Scholar
  32. Simmons, L. W. (1988). The contribution of multiple mating and spermatophore consumption to the lifetime reproductive success of female field crickets (Gryllus bimaculatus).Ecol. Entomol. 13 57–69.Google Scholar
  33. Simmons, L. W., and Bailey, W. J. (1990). Resource influenced sex roles of Zaprochiline Tettigoniids (Orthoptera; Tettigoniidae).Evolution 44 1853–1868.Google Scholar
  34. Solymar, B. D., and Cade, W. H. (1990). Heritable variation for female mating frequency in field cricketsGryllus integer.Behav. Ecol. Sociobiol. 26 73–76.Google Scholar
  35. Souroukis, K., and Cade, W. H. (1993). Reproductive competition and selecton on male traits at varying sex ratios in the field cricket,Gryllus pennsylvanicus.Behaviour 126 45–62.Google Scholar
  36. Thornhill, R. (1983). Cryptic female choice and its implications in the scorpionflyHarpobittacus nigriceps.Am. Nat. 122 765–788.Google Scholar
  37. Thornhill, R., and Alcock, J. (1983).The Evolution of Insect Mating Systems, Harvard University Press, Cambridge, MA.Google Scholar
  38. Walker, T. J. (1979). Calling crickets (Anurogryllus arboreus) over pitfalls: females, males, and predators.Environ. Entomol. 8 441–443.Google Scholar
  39. Wing, S. R. (1988). Cost of mating for female insects: Risk of predation inPhotinus collustrans (Coleoptera; Lampyridae).Am. Nat. 131 139–142.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Konstantine Souroukis
    • 1
  • Anne-Marie Murray
    • 1
  1. 1.Department of Biological SciencesBrock UniversitySt. CatharinesCanada
  2. 2.Biology Department, Erindale CollegeUniversity of TorontoMississaugaCanada

Personalised recommendations