Helgoländer Meeresuntersuchungen

, Volume 40, Issue 1–2, pp 57–82 | Cite as

The effect of sulfide and an increased food supply on the meiofauna and macrofauna at the East Flower Garden brine seep

  • E. N. Powell
  • T. J. Bright
  • J. M. Brooks


A sulfurous brine seep at the East Flower Garden Bank, northwest Gulf of Mexico, produces conditions conducive to the growth of a luxuriant prokaryotic biota. Hydrodynamic cropping continually harvests this biota and distributes it to sandy-bottom and hard-bank benthic communities downstream of the seep. Consequently, both macro- and meiofaunal abundances are dramatically increased above the regional norm in parts of the seep system. When sulfide is present, the lower Bilaterian groups belonging to the meiofauna dominate the community; without sulfide, macrofaunal groups, particularly crustaceans, dominate the community. Outside the influence of the seep, meiofaunal copepods predominate. Changes in taxonomic composition and abundance indicate that the sandy-bottom benthos at 70–80 m depth at the East Flower Garden bank is foodlimited and that, under these conditions, meiofauna, particularly the higher Bilaterian groups, dominate the community numerically. Perhaps, under food-limiting conditions, meiofauna compete favorably with macrofauna for food.


Waste Water Sulfide Water Management Water Pollution Food Supply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature cited

  1. Admiraal, A. & Peletier, H., 1979. Sulphide tolerance of benthic diatoms in relation to their distribution in an estuary. — Br. phycol. J.14, 185–196.Google Scholar
  2. Ankar, S. & Elmgren, R., 1976. The benthic macro- and meiofauna of the Askö-Landsort area (northern Baltic proper) a stratified random sampling survey. — Contr. Askö Lab.11, 1–115.Google Scholar
  3. Ansari, Z. A., 1984. Benthic macro- and meiofauna of seagrass (Thalassia hemprichii) bed at Minicoy, Lakshadweep. — Ind. J. mar. Sci.13, 126–127.Google Scholar
  4. Ballard, R. D. & Grassle, J. F., 1979. Return to oases of the deep. — Natn. geogr. Mag.156, 689–705.Google Scholar
  5. Bell, S. S. & Coull, B. C., 1978. Field evidence that shrimp predation regulates meiofauna. — Oecologia35, 141–148.CrossRefGoogle Scholar
  6. Bianchi, T. S. & Levinton, J. S., 1981. Nutrition and food limitation of deposit-feeders. II. Differential effects ofHydrobia totteni andIlyanassa obsoleta on the microbial community. — J. mar. Res.39, 547–556.Google Scholar
  7. Black, C. C., Jr. & Bender, M. M., 1976. δ13C values in marine organisms from the Great Barrier Reef.—Aust. J. Pl. Physiol.3, 25–32.Google Scholar
  8. Borowitzka, L. J. 1981. The microflora adaptations to life in extremely saline lakes. — Hydrobiologia81, 33–46.CrossRefGoogle Scholar
  9. Bright, T. J., Powell, E. N. & Rezak, R., 1980a. Environmental effects of a natural brine seep at the East Flower Garden Bank, northwestern Gulf of Mexico. In: Marine environmental pollution hydrocarbons. Ed. by R. Geyer. Elsevier, New York,1, 291–316.Google Scholar
  10. Bright, T. J., LaRock, P., Lauer, R. & Brooks, J., 1980b. A brine seep at the East Flower Garden Bank, northwestern Gulf of Mexico. — Int. Revue ges. Hydrobiol.65, 535–549.Google Scholar
  11. Brooks, D. A., 1983. The wake of Hurricane Allen in the western Gulf of Mexico. — J. phys. Oceanogr.13, 117–129.CrossRefGoogle Scholar
  12. Brooks, J. M., Bright, T. J., Bernard, B. B. & Schwab, C. R., 1979. Chemical aspects of a brine pool at the East Flower Garden Bank, northwestern Gulf of Mexico. — Limnol. Oceanogr.24, 735–745.Google Scholar
  13. Cline, J. D. & Richards, F. A., 1969. Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH. — Environ. Sci. Technol.3, 838–843.CrossRefGoogle Scholar
  14. Comita, P. B., Gagosian, R. B. & Williams, P. M., 1984. Suspended particulate organic material from hydrothermal vent waters at 21oN. — Nature, Lond.307, 450–453.Google Scholar
  15. Copeland, B. J., Odum, H. T. & Moseley, F. N., 1974. Migrating subsystems. In: Coastal ecological systems of the United States. Ed. by H. Odum, B. Copeland & E. McMahon. Conservation Fdn, Washington, D. C.,3, 422–453.Google Scholar
  16. Coull, B. C., Hicks, G. R. F. & Wells, J. B. J., 1981. Nematode/copepod ratios for monitoring pollution: a rebuttal. — Mar. Pollut. Bull.12, 378–381.CrossRefGoogle Scholar
  17. Dauer, D. M., Ewing, R. M., Tourtellotte, G. H., Harlan, W. T., Sourbeer, J. W. & Barker, H. R., 1982. Predation, resource limitation and the structure of benthic infaunal communities of the lower Chesapeake Bay. — Int. Revue ges. Hydrobiol.67, 477–489.Google Scholar
  18. Davis, P. H. & Spies, R. B., 1980. Infaunal benthos of a natural petroleum seep: study of community structure. — Mar. Biol.59, 31–41.CrossRefGoogle Scholar
  19. Elmgren, R., 1976. Baltic benthos communities and the role of the meiofauna, — Contr. Askö Lab.14, 1–31.Google Scholar
  20. Enright, J. T., Newman, W. A., Hessler, R. R. & McGowan, J. A., 1981. Deep ocean hydrothermal vent communities. — Nature, Lond.289, 219–221.Google Scholar
  21. Eskin, R. A. & Coull, B. C., 1984. A prior determination of valid control sites: an example using marine meiobenthic nematodes. — Mar. environ. Res.12, 161–172.CrossRefGoogle Scholar
  22. Fry, B. & Parker, P. L., 1979. Animal diet in Texas seagrass meadows: δ13C evidence for the importance of benthic plants. — Estuar. coast. mar. Sci.8, 499–509.CrossRefGoogle Scholar
  23. Fry, B. & Sherr, E. B., 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. — Contr. mar. Sci.27, 13–48.Google Scholar
  24. Fry, B., Anderson, R. K., Entzeroth, L., Bird, J. C., & Parker, P. L., 1984.13C enrichment and oceanic food web structure in the northwestern Gulf of Mexico. — Contr. mar. Sci.27, 49–64.Google Scholar
  25. Gerlach, S. A., 1971. On the importance of marine meiofauna for benthos communities. — Oecologia6, 176–190.CrossRefGoogle Scholar
  26. Gerlach, S. A., 1978. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. — Oecologia33, 55–69.CrossRefGoogle Scholar
  27. Gittings, S. R., Bright, T. J. & Powell, E. N., 1984. Hard-bottom macrofauna of the East Flower Garden brine seep: impact of a long-term, sulfurous brine discharge. — Contr. mar. Sci.27, 105–125.Google Scholar
  28. Guille, A. & Soyer, J., 1968. La faune benthique des substrats meubles de Banyuls-sur-mer premières données qualitatives et quantitatives. — Vie Milieu (B.)19, 323–360.Google Scholar
  29. Haines, E. B. & Montague, C. L., 1979. Food sources of estuarine invertebrates analyzed using13C/12C ratios. — Ecology60, 48–56.Google Scholar
  30. Heip, C., Herman, P. M. J. & Coomans, A., 1982. The productivity of marine meiobenthos. — Meded. K. Acad. Wet. Lett. Schone Kunsten Belg. (KL. Wet. Academiae Analecta)44, 1–20.Google Scholar
  31. Hoffman, A., 1978. System concepts and the evolution of benthic communities. — Lethaia11, 179–183.Google Scholar
  32. Jensen, P., (1986a). The nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. 1. Chromadorida. — Zool. Scr. 12 (in press).Google Scholar
  33. Jensen, P., (1986b). The nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. II Monhysterida. — Zool. Scr. 12 (in press).Google Scholar
  34. Jensen, P., (1986c). The nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. III Enoplida. — Zool. Scr. 12 (in press).Google Scholar
  35. Jørgensen, B. B., 1977. Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment. — Mar. Biol.41, 19–28.CrossRefGoogle Scholar
  36. Jørgensen, B. B. & Revsbech, N. P., 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. — Limnol. Oceanogr.30, 111–122.Google Scholar
  37. Kuipers, B. R., de Wilde, P. A. W. J. & Cruetzberg, F., 1981. Energy flow in a tidal flat ecosystem. — Mar. Ecol. Prog. Ser.5, 215–221.Google Scholar
  38. Lambshead, P. J. D., 1984. The nematode/copepod ratio some anomalous results from the Firth of Clyde. — Mar. Pollut. Bull.15, 256–259.CrossRefGoogle Scholar
  39. Lauer, R. D., 1979. Sulfur deposition in the East Flower Gardens, Gulf of Mexico. Thesis, Florida State Univ., 33 pp.Google Scholar
  40. Levine, S., 1980. Several measures of trophic structure applicable to complex food webs. — J. theor. Biol.83, 195–207.CrossRefGoogle Scholar
  41. Levinton, J. 1972. Stability and trophic structure in deposit-feeding and suspension-feeding communities. — Am. Nat.106, 472–486.CrossRefGoogle Scholar
  42. Mackin, J. G., 1973. A review of significant papers on effects of oil spills and oil field brine discharges on marine biotic communities. — Tech. Rep. Centr. Texas A&M Res. Fdn Proj.737, 1–87.Google Scholar
  43. Mare, M. F., 1942. A study of a marine benthic community with special reference to the microorganisms. — J. mar. biol. Ass. U.K.25, 517–554.Google Scholar
  44. McConnaughey, T. & McRoy, C. P., 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. — Mar. Biol.53, 257–262.CrossRefGoogle Scholar
  45. McIntyre, A. D., 1961. Quantitative differences in the fauna of boreal mud associations. — J. mar. biol. Ass. U.K.41, 599–616.Google Scholar
  46. McIntyre, A. D., 1969. Ecology of marine meiobenthos. — Biol. Rev.44, 245–290.Google Scholar
  47. Montagna, P. A., Coull, B. C., Herring, T. L. & Dudley, B. W., 1983. The relationship between abundances of meiofauna and their suspected microbial food (diatoms and bacteria). — Estuar. coast. Shelf Sci.17, 381–394.CrossRefGoogle Scholar
  48. O'Brien, D. J. & Birkner, F. B., 1977. Kinetics of oxygenation of reduced sulfur species in aqueous solution. — Environ. Sci. Technol.11, 1114–1120.CrossRefGoogle Scholar
  49. Osmond, C. B., Valaane, N., Haslam, S. M. Uotila, P. & Roksandic, Z., 1981. Comparison of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland: some implications for photosynthetic processes in aquatic plants. — Oecologia50, 117–124.CrossRefGoogle Scholar
  50. Parker, P. L., Behrens, E. W., Calder, J. A. & Shultz, D. 1972. Stable carbon isotope ratio variations in the organic carbon from Gulf of Mexico sediments. — Contr. mar. Sci.16, 139–147.Google Scholar
  51. Parker, P. L., Scalan, R., Winters, K. & Boatwrith, D., 1981. High molecular weight hydrocarbons, delta C-13, and total organic carbon in sediment. — Techn. Rep. Texas A&M Univ.81-2-T, 100–114.Google Scholar
  52. Pearson, T. H., 1981. Stress and catastrophe in marine benthic ecosystems. In: Stress effects on natural ecosystems. Ed. by G. W. Barrett & R. Rosenberg. Wiley, New York, 201–214.Google Scholar
  53. Pequegnat, W. E. & Sikora, W. R., 1977. Meiofauna project. In: Environmental studies, south Texas outer continental shelf, biology and chemistry. — Final Rep. U.S. Dept. Interior Bureau Land Management Contract Nr. 08550-CT6-17, 8-1 to 8-57.Google Scholar
  54. Peterson, C. H., 1977. Competitive organization of the soft-bottom macrobenthic communities of southern California lagoons. — Mar. Biol.4, 343–359.CrossRefGoogle Scholar
  55. Peterson, C. H., 1980. Approaches to the study of competition in benthic communities in soft sediments. In: Estuarine perspectives, Ed. by V. S. Kennedy. Acad. Press, New York, 291–302.Google Scholar
  56. Peterson, C. H., 1982. The importance of predation and intra- and interspecific competition in the population biology of two infaunal suspension-feeding bivalves,Protothaca staminea andChione undatella. — Ecol. Monogr.52, 437–475.Google Scholar
  57. Peterson, C. H., 1983. Interactions between two infaunal bivalves,Chione undatella (Sowerby) andProtothaca staminea (Conrad), and two potential enemies,Crepidula onyx (Sowerby) andCancer anthonyi (Rathbun). — J. exp. mar. Biol. Ecol.68, 145–158.CrossRefGoogle Scholar
  58. Powell, E. N. & Bright, T. J., 1981. A thiobios does exist: gnathostomulid domination of the canyon community at the East Flower Garden brine seep. — Int. Revue. ges. Hydrobiol.66, 675–683.Google Scholar
  59. Powell, E. N., Bright, T. J., Woods, A. & Gittings, S., 1983. Meiofauna and the thiobios in the East Flower Garden brine seep. — Mar. Biol.73, 269–283.CrossRefGoogle Scholar
  60. Raffaelli, D. G., 1981. Monitoring with meiofauna — a reply to Coull, Hicks and Wells (1981) and additional data. — Mar. Pollut. Bull.12, 381–382.CrossRefGoogle Scholar
  61. Raffaelli, D. G. & Mason, C. F., 1981. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. — Mar. Pollut. Bull.12, 158–163.CrossRefGoogle Scholar
  62. Rau, G. H., Mearns, A. J., Young, D. R., Olson, R. J., Schafer, H. A. & Kaplan, I. R., 1983. Animal13C/12C correlates with trophic level in pelagic food webs. — Ecology64, 1314–1318.Google Scholar
  63. Reise, K., 1977. Predator exclusion experiments in an intertidal mud flat. — Helgoländer wiss. Meeresunters.30, 263–271.Google Scholar
  64. Reise, K., 1979. Moderate predation on meiofauna by the macrobenthos of the Wadden Sea. — Helgoländer wiss. Meeresunters.32, 453–465.Google Scholar
  65. Renaud-Mornant, J. C., Salvat, B. & Bossy, C., 1971. Macrobenthos and meiobenthos from the closed lagoon of a Polynesian atoll, Maturei Vavao (Tuamotu). — Biotropica3, 36–55.Google Scholar
  66. Round, F. E., 1979. A diatom assemblage living below the surface of intertidal sand flats. — Mar. Biol.54, 219–223.CrossRefGoogle Scholar
  67. Sackett, W. M., Nakaparskin, S. & Dalrymple, D., 1970. Carbon isotope effects in methane production by thermal cracking. — Adv. org. Geochem.1966, 37–53.Google Scholar
  68. Sanders, H. L., 1960. Benthic studies in Buzzards Bay III. the structure of the soft-bottom community. — Limnol. Oceanogr.5, 138–153.Google Scholar
  69. Schidlowski, M., Matzigkeit, U. & Krumbein, W. E., 1984. Superheavy organic carbon from hypersaline microbial mats assimilatory pathway and geochemical implications. — Naturwissenschaften71, 303–308.CrossRefGoogle Scholar
  70. Sofer, Z., 1984. Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. — Bull. Am. Ass. Petrol. Geol.68, 31–49.Google Scholar
  71. Spies, R. B. & Davis, P. H., 1979. The infaunal benthos of a natural oil seep in the Santa Barbara Channel. — Mar. Biol.50, 227–237.CrossRefGoogle Scholar
  72. Stein, J. L., 1984. Subtidal gastropods consume sulfur-oxidizing bacteria: evidence from coastal hydrothermal vents. — Science, N.Y.223, 696–698.Google Scholar
  73. Straughan, D., 1982. Observations on the effects of natural oil seeps in the Coal Oil Point area. — Phil. Trans. R. Soc. Lond. (B)297, 269–283.Google Scholar
  74. Tenore, K. R., 1983. Organic nitrogen and caloric content of detritus III. Effect on growth of a deposit feeding polychaeteCapitella capitata. — Estuar. coast. Shelf Sci.17, 733–742.CrossRefGoogle Scholar
  75. Thayer, G. W., Govoni, J. J. & Connelly, D. W., 1983. Stable carbon isotope ratios of the planktonic food web in the northern Gulf of Mexico. — Bull. mar. Sci.33, 247–256.Google Scholar
  76. Thomassin, B. A., Vivier, M. & Vitiello, P., 1976. Distribution de la meiofaune et de la macrofaune des sables coralliens de la retenue d'eau epirécifale du Grand Récif de Tuléar (Madagascar). — J. exp. mar. Biol. Ecol.22, 31–53.CrossRefGoogle Scholar
  77. Thomassin, B. A., Jouin, C., Renaud-Mornant, J., Richard, G. & Salvat, B., 1982. Macrofauna and meiofauna in the coral sediments on the Tiahura reef complex, Moorea Island (French Polynesia). — Tethys10, 392–397.Google Scholar
  78. Virnstein, R. W., 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. — Ecology58, 1199–1217.Google Scholar
  79. Virnstein, R. W., 1979. Predation on estuarine infauna: response patterns of component species, — Estuaries,2, 69–86.Google Scholar
  80. Wangersky, P. J. & Wangersky, C. P., 1981. The manna effect: the structure of benthic populations. — Int. Revue ges. Hydrobiol.66, 777–786.Google Scholar
  81. Warwick, R. M., 1984. Species size distributions in marine benthic communities. — Oecologia61, 32–41.CrossRefGoogle Scholar
  82. Wieser, W., 1960. Benthic studies in Buzzards Bay II. The meiofauna. — Limnol. Oceanogr.5, 121–137.Google Scholar
  83. Wigley, R. L. & McIntyre, A. D., 1964. Some quantitative comparisons of offshore meiobenthos and macrobenthos south of Martha's Vineyard. — Limnol. Oceanogr.9, 485–493.Google Scholar
  84. Wiltse, W. I., Foreman, K. H., Teal, J. M. & Valiela, I., 1984. Effects of predators and food resources on the macrobenthos of salt marsh creeks. — J. mar. Res.42, 923–942.Google Scholar
  85. Witte, J. I. & Zijlstra, J. J., 1984. The meiofauna of a tidal flat in the western part of the Wadden Sea and its role in the benthic ecosystem. — Mar. Ecol. Prog. Ser.14, 129–138.Google Scholar
  86. Wong, W., Sackett, W. M. & Benedict, C. R., 1975. Isotope fractionation in photosynthetic bacteria during carbon dioxide assimilation. — Pl. Physiol.55, 475–479.Google Scholar
  87. Yingst, J. Y. & Rhoads, D. C., 1985. The structure of soft-bottom benthic communities in the vicinity of the Texas Flower Garden Banks, Gulf of Mexico. — Estuar. coast. Shelf Sci.20, 569–592.CrossRefGoogle Scholar
  88. Young, D. K. & Young, W. M., 1978. Regulation of species densities of seagrass-associated macrobenthos: evidence from field experiments in the Indian river estuary, Florida. — J. mar. Res.36, 569–593.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1986

Authors and Affiliations

  • E. N. Powell
    • 1
  • T. J. Bright
    • 1
  • J. M. Brooks
    • 1
  1. 1.Department of OceanographyTexas A & M UniversityCollege StationUSA

Personalised recommendations