Advertisement

Journal of Biological Physics

, Volume 9, Issue 2, pp 97–107 | Cite as

Fröhlich's model of bose condensation in biological systems

  • T. M. Wu
  • Steven J. Austin
Article

Abstract

Fröhlich's model of Bose-Einstein condensation in biological systems is analyzed using finite temperature Green's function techniques. The thermal average of the rate of change of vibrational mode quanta in the biological system is calculated and compared with Fröhlich's postulated rate equations. The appropriate phonon lifetime is also calculated and represents the minimum time needed to produce the condensed phase. The possible importance of this lifetime and its relation to recent microwave absorption experiments is discussed.

Keywords

Microwave Biological System Rate Equation Vibrational Mode Minimum Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhaumik, D.; Bhaumik, K.; Dutta-Roy, B. 1976a. Phys. Lett.56A, 145.Google Scholar
  2. Bhaumik, D.; Bhaumik, K.; Dutta-Roy, B. 1976b. Phys. Lett.59A, 77.Google Scholar
  3. Bhaumik, D.; Bhaumik, K.; Dutta-Roy, B.; Engineer, M. 1977. Phys. Lett.62A, 197.Google Scholar
  4. Fetter, A.; Walecka, J. D. 1971. QUANTUM THEORY OF MANY-PARTICLE SYSTEMS. McGraw-Hill.Google Scholar
  5. Fröhlich, H. 1968a Phys. Lett.26A, 402.Google Scholar
  6. Fröhlich, H. 1968b. Int. J. Quant. Chem.2, 641.CrossRefGoogle Scholar
  7. Fröhlich, H. 1970. Nature228, 1093.CrossRefGoogle Scholar
  8. Fröhlich, H. 1972. Phys. Lett.39A, 153.Google Scholar
  9. Fröhlich, H. 1975. Phys. Lett.51A, 21.Google Scholar
  10. Fröhlich, H. 1977. Riv. Nuovo Cim.7, 399.Google Scholar
  11. Grundler, W.; Keilmann, F.; Fröhlich, H. 1977. Phys. Lett.62A, 463.Google Scholar
  12. Grundler, W.; Keilmann, F. 1978. Z. Naturforsch.33C, 15.Google Scholar
  13. Kaiser, F. 1979. Z. Naturforsch.34A, 134.Google Scholar
  14. Mills, R. 1979. Phys. Lett.74A, 278.Google Scholar
  15. Sevastyanova, L. A.; Vilenskaya, R. L. 1974. Sov. Phys. USPEKHI16, 570.Google Scholar
  16. Smolyanskaya, A. Z.; Vilenskaya, R. L. 1974. Sov. Phys. USPEKHI16, 571.Google Scholar
  17. Webb, S. J.; Stoneham, M. E. 1977a. Phys. Lett.60A, 267.Google Scholar
  18. Webb, S. J.; Stoneham, M. E.; Fröhlich, H. 1977b. Phys. Lett.63A, 407.Google Scholar
  19. Webb, S. J. 1979. Phys. Lett.73A, 145.Google Scholar
  20. Wu, T. M.; Austin, S. 1977. Phys. Lett.64A, 151.Google Scholar
  21. Wu, T. M.; Austin, S. 1978a. Phys. Lett.65A, 74.Google Scholar
  22. Wu, T. M.; Austin, S. 1978b. J. Theor. Biol.71, 209.Google Scholar
  23. Wu, T. M.; Austin, S. 1979. Phys. Lett.73A, 266.Google Scholar

Copyright information

© Forum Press, Inc 1981

Authors and Affiliations

  • T. M. Wu
    • 1
  • Steven J. Austin
    • 1
  1. 1.Department of Physics, Applied Physics and AstronomyState University of New York at BinghamtonUSA

Personalised recommendations