Die Kulturpflanze

, Volume 36, Issue 1, pp 189–208 | Cite as

The evolution of cultivated potatoes and their tuber-bearing wild relatives

  • John G. Hawkes
N. I. Vavilov — Symposium Zum 100. Geburtstag Von N.I. Vavilov Gatersleben, 8.–10. Dezember 1987

Summary

Recent evidence indicates that potatoes were first domesticated in the central Andes of South America some 10,000 years ago. These belonged to the primitive diploid species,Solanum stenotomum, derived from the wild prototype,S. leptophyes. The tetraploid potato,S. tuberosum, arose through hybridization ofS. stenotomum with a second wild diploid species,S. sparsipilum. Further evolution took place with at least two other wild species,S. acaule andS. megistacrolobum, bringing genes for frost resistance into the cultivated gene pool, and resulting in a polyploid series.

Wild potatoes began to evolve in Mexico, and some of these migrated into South America when the land bridge was formed in Pliocene times. Return migrations to Mexico took place later, forming tetraploid and hexaploid species groups. Evidence of evolution is based on the change of the primitive white stellate corolla into an advanced rotate corolla form in South America. This hypothesis is also supported by serological and cytogenetical evidence.

All the hypotheses on potato evolution proposed here accord well withVavilov's theories of plant domestication.

Die Evolution der Kulturkartoffeln und ihrer knollentragenden verwandten Wildarten

Zusammenfassung

Neue Befunde weisen darauf hin, daß die Kartoffeln zuerst vor etwa zehntausend Jahren in den Zentral-Anden Südamerikas domestiziert wurden. Diese gehörten zur primitiven diploiden ArtSolanum stenotomum, die vom wilden PrototypS. leptophyes hergeleitet wird. Die tetraploide KartoffelS. tuberosum ging aus der Hybridisierung vonS. stenotomum mit einer zweiten diploiden Wildart,S. sparsipilum, hervor. An der weiteren Evolution waren mindestens zwei weitere Wildarten beteiligt, nämlichS. acaule andS. megistacrolobum. Sie brachten Gene für Frostresistenz in den kultivierten Genpool ein und hatten die Entstehung einer polyploiden Serie zur Folge.

Die Wildkartoffeln begannen sich in Mexiko zu entwickeln und einige von ihnen wanderten im Pleistozän über die temporäre Landbrücke nach Südamerika. Später fanden Rückwanderungen nach Mexiko statt, die zur Ausbildung von tetra- und hexaploiden Artengruppen führten. Der Beweis für die Evolution wird auf die Veränderung der primitiven weißen strahlenförmigen Blumenkrone in eine weiter entwickelte radförmige Blumenkronenform in Südamerika gegründet. Diese Hypothese wird auch durch serologische und cytogenetische Befunde gestützt.

Alle hier vorgeschlagenen Hypothesen über die Kartoffelevolution stimmen gut mitVavilovs Theorien zur Pflanzendomestikation überein.

Эволюцпя культурного картофеля и его клубненосных родетвенных диких видов

Краткое содержапие

Новые находки указывают на то, что картофель был одомашен всего лишь около 10 000 лет назад в Центральиых Андах Южной Америки. Он принадлежал к прпмитивпому диплоидному видуSolanum stenotomum, дпким прототипом которого являетеяS. leptophyes. Тетраплоидный картофельS. tuberosum произошеп путем гибридпзацииS. stenotomum с другим дпплоидным дпким видом —S. sparsipilum. В дальнеймей эволюции участвовали, по крайней мере, ещё два другпх диких вида, такие как:S. acaule иS. megistacrolobum. Они внесли гены морозоустойчивости в культивируемый генный нул и, как следствие, произошло возникновение полинлоидной серии.

Дикие виды картофеля начали развиваться в Мексике и некоторые из них иопали в период плэоцена, через временный перешеек, в Южную Америку. Позднее произошло его обратное переселение в Мексику, что иривело к образованию тетра- и гексаплоидных видов груии. Доказательством эволюции служит также изменение венчика от примитивного белого лучеобразного в более развитую, колесовидную формы в Южной Америке. Эта гинотеза поддерживается также серологическими и цитогенетическими результатами.

Все здесь предложениые гинотезы об эволюции картофеля, хорошо совпадают с теорией Вавилова об одомашивании растений.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Astley, D., andJ. G. Hawkes, 1979: The nature of the Bolivian weed potato speciesSolanum sucrense Hawkes. — Euphytica28, 685–696.Google Scholar
  2. Brücher, H., 1954: Cytologische und ökologische Beobachtungen an nordargentinischenSolanum-Arten der Section Tuberarium. Teil I. Die Wildkartoffel-Arten des Aconquija-Gebirges. — Züchter24, 281–295.Google Scholar
  3. Bukasov, S. M., 1939: The origin of potato species. — Physis, Buenos Aires18, 41–46.Google Scholar
  4. ——, 1941: The origin of species of potatoes. — Vestnik Socialisticheskogo Rastenievodstva1, 157–164 (Russ.).Google Scholar
  5. ——, 1968: Phylogeny of the cultivated potato species. — In: Genetichii izsledvaniya v pametna Doncho Kostov, 19–30. (Russ.) — Bulgarian Academy of Sciences. Sofia.Google Scholar
  6. ——, 1970: Cytogenetic problems of evolution of the potato species of the section Tuberarium(Dun.) Buk. genusSolanum. — Genetika6, (4), 84–95 (Russ.).Google Scholar
  7. Correll, D. S., 1962: The potato and its wild relatives. — Contributions from the Texas Research Foundation,4, pp. 606. — Texas Research Foundation, Renner, Texas.Google Scholar
  8. Cribb, P. J., andJ. G. Hawkes, 1986: Experimental evidence for the origin ofS. tuberosum subsp.andigena. In:D'Arcy, W. G. (Ed.): Solanaceae: biology and systematics. — Columbia University Press, New York.Google Scholar
  9. Gell, P. G. H., J. G. Hawkes, andS. T. Wright, 1960: The application of immunological methods to the taxonomy of species within the genusSolanum. — Proc. Royal Society, Series B,151, 364–383.Google Scholar
  10. Hallam, A., 1981: Relative importance of plate movements, custasy and climate in controlling major biogeographical changes since the early Mesozoic. In:Nelson, G., andD. E. Rosen (Eds.): Vicariance Biogeography: A Critique. — Columbia University Press, New York.Google Scholar
  11. Hanneman, R. E., andJ. B. Bamberg, 1986: Inventory of tuber-bearingSolanum species. — University of Wisconsin, Madison. U.S.D.A. Bulletin533.Google Scholar
  12. Hawkes, J. G., 1956: Hybridization studies on four hexaploidSolanum species in series DemissaBuk. — New Phytol.55, 191–205.Google Scholar
  13. ——, 1958a: Potatoes: Taxonomy, Cytology and Crossability. In:Kappert, H., andW. Rudorf (Eds.): Handbuch der Pflanzenzüchtung, 2nd edition, Vol. 3, Chapter 1, 1–43. Parey, Berlin und Hamburg.Google Scholar
  14. ——, 1958b: Significance of wild species and primitive forms for potato breeding. — Euphytica7, 257–270.Google Scholar
  15. ——, 1962: The origin ofSolanum juzepszukii Buk. andS. curtilobum Juz. etBuk. — Zeitschr. Pflanzenzücht.47, 1–14.Google Scholar
  16. ——, 1966: Modern taxonomic work on theSolanum species of Mexico and adjacent countries. — Amer. Potato J.43, (3), 81–103.Google Scholar
  17. ——, 1978: Biosystematics of the potato. In:Harris, P. M. (Ed.): The Potato Crop: the Scientific Basis for Improvement. Chapter 2, 15–69. — Chapman and Hall, London.Google Scholar
  18. --, andJ. P. Hjerting, 1969: The potatoes of Argentina, Brazil, Paraguay and Uruguay — a biosystematic study. — Annals of Botany, Memoir No.3. Oxford University Press.Google Scholar
  19. --, --, 1988: The potatoes of Bolivia — their Breeding Value and Evolutionary Relationships. — Oxford University Press.Google Scholar
  20. --, andM. T. Jackson (in press): Evolutionary implications of the embryo balance number hypothesis in potatoes. —Google Scholar
  21. Huamán, Z., J. G. Hawkes, andP. R. Rowe, 1982: A biosystematic study of the origin of the diploid potato,Solanum ajanhuiri. — Euphytica31, 665–675.Google Scholar
  22. ——, ——, ——, 1983: Chromatographic studies on the origin of the cultivated potatoSolanum ajanhuiri. — Amer. Potato J.60, 361–367.Google Scholar
  23. Jackson, M. T., J. G. Hawkes, andP. R. Rowe, 1977: The nature ofSolanum chaucha Juz. etBuk., a triploid cultivated potato of the South American Andes. — Euphytica25, 775–783.Google Scholar
  24. ——, andJ. G. Hawkes, 1978: Crossability relationships of Andean potato varieties of three ploidy levels. — Euphytica27, 541–555.Google Scholar
  25. Johnston, S. A., T. P. M. den Nijs, S. J. Peloquin, andR. E. Hanneman, 1980: The significance of genic balance to endosperm development in interspecific crosses. — Theor. Appl. Genet.57, 5–9.Google Scholar
  26. Juzepczuk, S. W., andS. M. Bukasov, 1929: A contribution to the question of the origin of the potato. — Trudy Vsesoyuznoi Sezda po Genetike i Selektsii3, 593–611 (Russ.).Google Scholar
  27. Kawakami, K., andM. Matsubayashi, 1957: Studies on the species differentiation in the section Tuberarium ofSolanum. V. Genomic affinity betweenSolanum verrucosum andS. demissum. — Hyogo Noka Daigaku Kenkyu Hokoku: Nogaku Hen Sci. Rep. Hyogo Univ. Agric.: Ser. Agric. 1957,3, 17–21.Google Scholar
  28. López, L., 1979: A biosystematical study of the Series Conicibaccata of the genusSolanum. — Ph. D. Thesis, University of Birmingham.Google Scholar
  29. Marks, G. E., 1955: Cytogenetic studies in tuberousSolanum species. I. Genomic differentiation in the group Demissa. — J. Genetics53, 262–269.Google Scholar
  30. Mok, D. W. S., andS. J. Peloquin, 1975a: Three mechanisms of 2n pollen formation in diploid potatoes. — Canad. J. Genet. and Cytol.17, 217–225.Google Scholar
  31. ——, ——, 1975b: Breeding value of 2n pollen (diplandroids) in tetraploid × diploid crosses in potatoes. — Theor. Appl. Genet.46, 307–314.Google Scholar
  32. Nijs, T. P. M. den, andS. J. Peloquin, 1977: Polyploid evolution via 2n gametes. — Amer. Potato J.54, 377–386.Google Scholar
  33. Raven, P. H., andD. I. Axelrod, 1975: History of the flora and fauna of Latin America. — Amer. Scient.63, 420–429.Google Scholar
  34. Rybin, V. A., 1930: Karyologische Untersuchungen an einigen wilden und einheimischen kultivierten Kartoffeln Amerikas. — Z. indukt. Abstammungs- und Vererbungslehre53, 313–354.Google Scholar
  35. ——, 1933: Cytological investigations of the South American cultivated and wild potatoes and its significance for plant breeding. — Trudy Prikl. Bot. Genet. i Selek. IId Series, No.2, 3–173 (Russ.).Google Scholar
  36. Schmiediche, P. E., J. G. Hawkes, andC. M. Ochoa, 1980: Breeding of the cultivated potato speciesSolanum juzepczukii Buk. andS. curtilobum Juz. etBuk. I. — Euphytica29, 685–704.Google Scholar
  37. ——, ——, ——, 1982: The breeding of the cultivated potato speciesSolanum juzepczukii Buk. andS. curtilobum Juz. etBuk. II. — Euphytica31, 695–707.Google Scholar
  38. Simpson, G. G., 1980: Splendid Isolation. The Curious History of South American Mammals. — Yale University Press, New Haven and London.Google Scholar
  39. Tarn, T. R., andJ. G. Hawkes, 1986: Cytogenetic studies and the occurrence of triploidy in the wild potato speciesSolanum commersonii Dun. — Euphytica35, 293–302.Google Scholar

Copyright information

© Akademie-Verlag 1988

Authors and Affiliations

  • John G. Hawkes
    • 1
  1. 1.The University of BirminghamBirminghamEngland

Personalised recommendations