Agents and Actions

, Volume 42, Issue 3–4, pp 81–85 | Cite as

Histamine increases anti-CD3 induced IL-5 production of TH2-type T cells via histamine H2-receptors

  • Jürgen Schmidt
  • Sandra Fleißner
  • Irene Heimann-Weitschat
  • Roland Lindstaedt
  • Istvan Szelenyi
Allergy and Histamine


Besides its proinflammatory functions histamine released from basophils and mast cells during immediate-type hypersensitivity reactions is known to inhibit several lymphocyte functions like IL-2 and γ-IFN production. Recently, it has been shown that T helper cells of type 2 phenotype (TH2) represent the T cell fraction which may play a pivotal role in the promotion of the allergic inflammatory eosinophilic late-phase reaction by secretion of cytokines, especially IL-4 and IL-5. We have investigated the effect of histamine on anti-CD3 induced IL-4 and IL-5 production by TH2 cells. Histamine in concentrations between 10−7 and 10−5 mol/l concentration-dependently increased anti-CD3 induced IL-5 production up to 120%, whereas IL-4 production was not affected. The activity of histamine in increasing IL-5 production was mimicked by the H2-receptor agonist dimaprit. Histamine induced increase in IL-5 production was inhibited by histamine H2-receptor antagonists, but remained unaffected by H1- or H3-receptor antagonists. Administration of forskolin which directly stimulates the production of cAMP, the second messenger of the H2-receptor, also resulted in an increase in anti-CD3 induced IL-5 production. These results indicate that the histamine-mediated increase in anti-CD3 induced IL-5 production is mediated via H2-receptors. Consequently, histamine released from mast cells and basophils during the early-phase allergic reaction may act as an important stimulatory signal for the initiation of the allergic inflammatory late-phase reaction by increasing local IL-5 production of allergen triggered TH2 cells.

Key words

T helper cells Histamine Interleukin-4 Interleukin-5 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. J. Beer and R. E. Rocklin,Histamine modulation of lymphocyte biology: membrane receptors, signal transduction, and functions. Crit. Rev. Immunol.7, 55–91 (1987).PubMedGoogle Scholar
  2. [2]
    M. Dohlsten, H. O. Sjörgen and R. Carlsson,Histamine acts directly on human T cells to inhibit interleukin-2 and interferon-gamma production. Cell. Immunol.109, 65–74 (1987).CrossRefPubMedGoogle Scholar
  3. [3]
    M. Dohlsten, T. Kalland, H. O. Sjörgen and R. Carlsson.Histamine inhibits interleukin-1 production by lipopolysaccharide-stimulated human peripheral blood monocytes. Scand. J. Immunol.27, 527–532 (1988).PubMedGoogle Scholar
  4. [4]
    E. Vannier, L. C. Miller and C. A. Dinarello,Histamine suppresses gene expression and synthesis of tumor necrosis factor α via histamine H2 receptors. J. Exp. Med.174, 281–284 (1991).CrossRefPubMedGoogle Scholar
  5. [5]
    A. B. Kay,Lymphocytes in asthma. Respir. Med.85, 87–96 (1991).PubMedGoogle Scholar
  6. [6]
    C. J. Corrigan and A. B. Kay,T-cells and eosinophils in the pathogenesis of asthma. Immunol. Today13, 501–507 (1992).CrossRefPubMedGoogle Scholar
  7. [7]
    D. S. Robinson, A. M. Bentley, A. Hartnell, A. B. Kay and S. R. Durham,Activated memory T helper cells in bronchoalveolar lavage fluid from patients with atopic asthma: Relation to asthma symptoms, lung function, and bronchial responsiveness. Thorax48, 26–32 (1993).PubMedGoogle Scholar
  8. [8]
    D. S. Robinson, Q. Hamid, Sun Ying, A. Tsicopoulos, J. Barkans, A. M. Bentley, C. J. Corrigan, S. R. Durham and A. B. Kay,Evidence for a predominant “Th2-type” bronchoalveolar lavage T-lymphocyte population in atopic asthma. New Engl. J. Med.326, 298–304 (1992).PubMedGoogle Scholar
  9. [9]
    A. B. Kay, Sun Ying, V. A. Varney, M. Gaga, S. R. Durham, R. Moqbel, A. J. Wardlaw and Q. Hamid,Messenger RNA expression of the cytokine gene cluster, IL-3, IL-4, IL-5 and GM-CSF in allergen-induced late-phase cutaneous reactions in atopic subjects. J. Exp. Med.173, 775–778 (1991).CrossRefPubMedGoogle Scholar
  10. [10]
    S. R. Durham, S. Ying, V. A. Varney, M. R. Jacobsen, R. M. Sudderrick, I. S. Mackay, A. B. Kay and Q. A. Hamid,Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/macrophage-colony-stimulating factor in the nasal mucosa after local allergen provocation: Relationship to tissue eosinophilia. J. Immunol.148, 2390–2394 (1992).PubMedGoogle Scholar
  11. [11]
    T. R. Mosmann and R. L. Coffman,Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv. Immunol.46, 111–147 (1989).PubMedGoogle Scholar
  12. [12]
    R. L. Coffman, J. Ohara, M. W. Bond, J. Carty, E. Zlotnik and W. E. Paul.B-cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated β-cells. J. Immunol.136, 4538–4541 (1986).PubMedGoogle Scholar
  13. [13]
    R. P. Schleimer, S. A. Sterbinsky, J. Kaiser, C. A. Bickel, D. A. Klunk and K. Tomoika,IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium: Association with expression of VACM-1. J. Immunol.148, 1086–1092 (1992).PubMedGoogle Scholar
  14. [14]
    C. J. Sanderson, D. J. Warren and M. Strath,Identification of a lymphokine that stimulates eosinophil differentiation in vitro: Its relationship to IL-3 and functional properties of eosinophils produced in cultures. J. Exp. Med.162, 60–74 (1985).CrossRefPubMedGoogle Scholar
  15. [15]
    A. F. Lopez, C. J. Sanderson, J. R. Gamble, H. D. Campbell, I. G. Young and M. A. Vadas,Recombinant human interleukin-5 is a selective activator of human eosinophil function. J. Exp. Med.167, 219–224 (1988).CrossRefPubMedGoogle Scholar
  16. [16]
    M. E. Rothenberg, J. Petersen, R. L. Stevens, D. S. Silberstein, D. T. McKenzie, K. F. Austen and W. F. Owen,IL-5 dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity and sustained antibody-dependent cytotoxicity. J. Immunol.143, 2311–2316 (1989).PubMedGoogle Scholar
  17. [17]
    G. M. Walsh, A. Hartnell, A. J. Wardlaw, K. Kurihara, C. J. Sanderson and A. B. Kay,IL-5 enhances the in-vitro adhesion of human eosinophils, but not neutrophils, in a leukocyte integrin (CD11/18)dependent mannen. Immunology71, 258–265 (1990).PubMedGoogle Scholar
  18. [18]
    J. Kaye, S. Porcelli, J. Tite, B. Jones and C. A. Janeway,Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J. Exp. Med.158, 836–856 (1983).CrossRefPubMedGoogle Scholar
  19. [19]
    F. M. Villemain, J. F. Bach and L. M. Chatenoud,Characterization of histamine H 1 binding sites on human T lymphocytes by means of 125 I-iodobolpyramine. Preferential expression of H 1 receptors on CD8 + T lymphocytes. J. Immunol.144, 1449–1454 (1990).PubMedGoogle Scholar
  20. [20]
    J. C. Ruby, C. L. Martin and H. K. Muller,Flow cytometric detection of histamine binding to lymphocytes. Int. Arch. Allergy Appl. Immunol.73, 198–204 (1984).PubMedGoogle Scholar
  21. [21]
    W. Roszkowski, M. Plaut and L. M. Lichtenstein,Selective display of histamine receptors on lymphocytes. Science195, 683–685 (1977).PubMedGoogle Scholar
  22. [22]
    D. Mary, C. Aussel, B. Ferrua and M. Fehlmann,Regulation of IL-2 synthesis by cAMP in human T-cells. J. Immunol.139, 1179–1184 (1987).PubMedGoogle Scholar
  23. [23]
    M. Plaut, G. Marone and G. Gillespie,The role of cAMP in modulating cytotoxic T lymphocytes. II. Sequential changes during culture in responsiveness of cytotoxic lymphocytes to cyclic AMP-active agents. J. Immunol.131, 2945–2952 (1983).PubMedGoogle Scholar
  24. [24]
    S. A. Robicsek, D. K. Blanchard, J. Djeu, J. J. Krzanowski, A. Szentivanyi and J. B. Polson,Multiple high affinity cAMP-phosphodiesterases in human T-lymphocytes. Biochem. Pharmacol.42, 869–877 (1990).CrossRefGoogle Scholar
  25. [25]
    M. Betz and B. S. Fox,Prostaglandin E 2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol.146, 108–113 (1991).PubMedGoogle Scholar
  26. [26]
    G. K. Adams and L. M. Lichtenstein,In vitro studies of antigen induced bronchospasm: Effect of antihistamine and SRS-A antagonist on response of sensitized guinea pig and human airways to antigen. J. Immunol.122, 555–562 (1979).PubMedGoogle Scholar
  27. [27]
    M. Kopf, G. LeGros, M. Bachmann, M. C. Lamers, M. Bluethmann and G. Köhler,Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature362, 245–248 (1993).CrossRefPubMedGoogle Scholar
  28. [28]
    P. Bradding, I. H. Feather, P. H. Howarth, R. Mueller, J. A. Roberts, K. Britten, J. P. A. Brews, T. C. Hunt, Y. Okayama, C. H. Heusser, G. R. Bullock, M. K. Church and S. T. Holgate,Interleukin 4 is localized to and released by human mast cells. J. Exp. Med.176, 1381–1386 (1992).CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • Jürgen Schmidt
    • 1
  • Sandra Fleißner
    • 1
  • Irene Heimann-Weitschat
    • 1
  • Roland Lindstaedt
    • 1
  • Istvan Szelenyi
    • 1
  1. 1.Department of PharmacologyASTA Medica AGFrankfurt/MainGermany

Personalised recommendations