Advertisement

Communications in Mathematical Physics

, Volume 77, Issue 2, pp 111–126 | Cite as

Correlation inequalities and the decay of correlations in ferromagnets

  • Barry Simon
Article

Abstract

We prove a variety of new correlation inequalities which bound intermediate distance correlations from below by long distance correlations. Typical is the following which holds for spin 1/2 nearest neighbor Ising ferromagnets:
$$\langle S_\alpha S_\gamma \rangle \leqq \sum\limits_{\delta \in B} {\langle S_\alpha S_\delta \rangle } \langle S_\delta S_\gamma \rangle$$
whereB is any subset of the lattice whose removal divides the lattice into pieces with α,γ in distinct components. We describe various applications, e.g. the above inequality implies the critical exponent inequality η<1.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S.: Hebrew University preprint; paper in preparationGoogle Scholar
  2. 2.
    Aizenman, M., Simon, B.: Commun. Math. Phys.77, 137–143 (1980)Google Scholar
  3. 3.
    Aizenman, M., Simon, B.: Phys. Lett. (to appear)Google Scholar
  4. 4.
    Bricmont, J.: J. Stat. Phys.17, 289 (1977)CrossRefGoogle Scholar
  5. 5.
    Deift, P., Hunziker, W., Simon, B., Vock, E.: Commun. Math. Phys.64, 7 (1970)Google Scholar
  6. 6.
    Dreisler, W., Landau, L., Fernando-Perez, J.: J. Stat. Phys.20, 123 (1979)CrossRefGoogle Scholar
  7. 7.
    Dobrushin, R.L.: Talks at Estrogom and Triblisi conferencesGoogle Scholar
  8. 8.
    Dunlop, F.: J. Stat. Phys. (to appear)Google Scholar
  9. 9.
    Ellis, R., Monroe, J., Newman, C.: Commun. Math. Phys.46, 167 (1976)CrossRefGoogle Scholar
  10. 10.
    Fisher, M.: Phys. Rev.162, 480 (1967)CrossRefGoogle Scholar
  11. 11.
    Fröhlich, J., Israel, R., Lieb, E., Simon, B.: Commun. Math. Phys.62, 1 (1978)CrossRefGoogle Scholar
  12. 12.
    Fröhlich, J., Spencer, T.: In preparationGoogle Scholar
  13. 13.
    Ginibre, J.: Commun. Math. Phys.16, 310 (1970)CrossRefGoogle Scholar
  14. 14.
    Glimm, J., Jaffe, A.: Commun. Math. Phys.51, 1 (1976)CrossRefGoogle Scholar
  15. 15.
    Glimm, J., Jaffe, A.: Commun. Math. Phys.52, 263 (1977)CrossRefGoogle Scholar
  16. 16.
    Glimm, J., Jaffe, A., Spencer, T.: Ann. Math.100, 585 (1974)Google Scholar
  17. 17.
    Glimm, J., Jaffe, A., Spencer, T.: Constructive quantum field theory (eds. G. Yelo, A.S. Wightman, pp. 199–242. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  18. 18.
    Griffiths, R.: J. Math. Phys. (N. Y.)8, 478 (1967)CrossRefGoogle Scholar
  19. 19.
    Griffiths, R.: J. Math. Phys.8, 484 (1967)CrossRefGoogle Scholar
  20. 20.
    Griffiths, R.: Commun. Math. Phys.6, 121 (1967)CrossRefGoogle Scholar
  21. 21.
    Griffiths, R.: J. Math. Phys. (N. Y.)10, 1559 (1969)CrossRefGoogle Scholar
  22. 22.
    Griffiths, R., Hurst, C., Sherman, S.: J. Math. Phys. (N. Y.)11, 790 (1970)CrossRefGoogle Scholar
  23. 23.
    Gross, L.: Commun. Math. Phys. (to appear)Google Scholar
  24. 24.
    Guerra, F., Rosen, L., Simon, B.: Ann. Math.101, 111 (1975)Google Scholar
  25. 25.
    Kelley, D., Sherman, S.: J. Math. Phys. (N. Y.)9, 466 (1968)CrossRefGoogle Scholar
  26. 26.
    Shugard, W., Weeks, J., Gilmer, G.: Bell Labs PreprintGoogle Scholar
  27. 27.
    Krinsky, S., Emery, V.: Phys. Lett.50A, 235 (1974)Google Scholar
  28. 28.
    Lebowitz, J.: Commun. Math. Phys.35, 87 (1974)CrossRefGoogle Scholar
  29. 29.
    Lebowitz, J.: Lecture Notes in Physics, Vol. 39, p. 370Google Scholar
  30. 30.
    Lieb, E.: Commun. Math. Phys.77, 127–135 (1980)Google Scholar
  31. 31.
    McBryan, O., Rosen, J.: Commun. Math. Phys.51, 97 (1967)CrossRefGoogle Scholar
  32. 32.
    Newman, C.: Z. Wahrsch.33, 75 (1975)CrossRefGoogle Scholar
  33. 33.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. London, New York: Academic Press 1978Google Scholar
  34. 34.
    Sylvester, G.: Harvard university thesisGoogle Scholar
  35. 35.
    Thompson, C.: Commun. Math. Phys.24, 61 (1971)CrossRefGoogle Scholar
  36. 36.
    Wells, D.: Indiana university preprintGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Barry Simon
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations