Advertisement

Pharmaceutisch Weekblad

, Volume 12, Issue 5, pp 169–181 | Cite as

Artemisia annua L.: a source of novel antimalarial drugs

  • Herman J. Woerdenbag
  • Charles B. Lugt
  • Niesko Pras
Reviews

Abstract

Artemisia annua L. contains artemisinin, an endoperoxide sesquiterpene lactone, mainly in its leaves and inflorescences. This compound and a series of derivatives have attracted attention because of their potential value as antimalarial drugs. In this review a survey of the currently available literature data is given. It includes phytochemical aspects, such as constituents ofA. annua, the artemisinin content during the development of the plant and its biosynthesis, isolation, analysis and stability. Total chemical synthesis of artemisinin is referred to, as well as structure—activity relationships of derivatives and simplified analogues. Pharmacological studies are summarized, including the mechanism of action, interaction of the antimalarial activity with other drugs, possible occurrence of resistance to artemisinin, clinical results, toxicological aspects, metabolism and pharmacokinetics. Finally, plant cell biotechnologyy is mentioned as a possible means to obtain plants and cell cultures with higher artemisinin contents, allowing an industrial production of pharmaceuticals containing this novel drug.

Keywords

Artemisia annua L. Artemisinin Biosynthesis Chemistry, analytical Clinical trials Pharmacology Sesquiterpene lactones Structure—activity relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science 1985;228:1049–55.Google Scholar
  2. 2.
    Qinghaosu Antimalarial Coordinating Research Group. Antimalarial studies on qinghaosu. Chin Med J 1979;92:811–6.Google Scholar
  3. 3.
    China Cooperative Research Group on Qinghaosu and Its Derivatives as Antimalarials. Chemical studies on qinghaosu artemisinine. J Trad Chin Med 1982;2:3–8.Google Scholar
  4. 4.
    Ding GS. Traditional Chinese medicine and modern pharmacology. Int J Pharm 1987;1:11–5.Google Scholar
  5. 5.
    Liu JM, Ni MY, Fan JF, et al. Structure and reaction of arteannuin. Acta Chim Sin 1979;37:129–43.Google Scholar
  6. 6.
    Luo XD, Shen CC. The chemistry, pharmacology, and clinical applications of qinghaosu (artemisinin) and its derivatives. Med Res Rev 1987;7:29–52.Google Scholar
  7. 7.
    Nickel P. Malaria: problems in treatment. Pharm Int 1983;4:37–41.Google Scholar
  8. 8.
    Beales PF. The prevention and control of malaria. Int Pharm J 1988;2:16–23.Google Scholar
  9. 9.
    White NJ. Drug treatment and prevention of malaria. Eur J Clin Pharmacol 1988;34:1–14.Google Scholar
  10. 10.
    Bruce-Chwatt LJ. Qinghaosu: a new antimalarial. Br Med J 1982;284:767–8.Google Scholar
  11. 11.
    Tu YY, Ni MY, Zhong YR, et al. Studies on the constituents ofArtemisia annua. Part II. Planta Med 1982;44:143–5.Google Scholar
  12. 12.
    Klayman DL, Lin AJ, Acton N, et al. Isolation of artemisinin (qinghaosu) fromArtemisia annua growing in the United States. J Nat Prod 1984;47:715–7.Google Scholar
  13. 13.
    Rücker G, Mayer R, Manns D. Isolierung von Quinghaosu ausArtemisia annua europäischer Herkunft. Planta Med 1986;52:245.Google Scholar
  14. 14.
    Singh A, Kaul VK, Mahajan VP, et al. Introduction ofArtemisia annua in India and isolation of artemisinin, a promising antimalarial drug. Indian J Pharm Sci 1986;48:137–8.Google Scholar
  15. 15.
    Huneck S, Zdero C, Bohlmann F. Seco-guaianolides and other constituents fromArtemisia species. Phytochemistry 1986;25:883–9.Google Scholar
  16. 16.
    Rodriguez E, Towers GHN, Mitchell JC. Biological activities of sesquiterpene lactones. Phytochemistry 1976;15:1573–80.Google Scholar
  17. 17.
    Picman AK. Biological activities of sesquiterpene lactones. Biochem Syst Ecol 1986;14:255–81.Google Scholar
  18. 18.
    Zhongshan W, Nakashima TT, Kopecky KR, Molina J. Qinghaosu:1H- and13C-nuclear magnetic resonance spectral assignments and luminiscence. Can J Chem 1985;63:3070–4.Google Scholar
  19. 19.
    Blasko G, Cordell GA, Lankin DC. Definitive1H- and13C-NMR assignments of artemisinin (qinghaosu). J Nat Prod 1988;51:1273–6.Google Scholar
  20. 20.
    Leban I, Golic L, Japelj M. Crystal and molecular structure of qinghaosu: a redetermination. Acta Pharm Jugosl 1988;38:71–7.Google Scholar
  21. 21.
    O'Neill MJ, Bray DH, Boardman P, Phillipson JD, Warhurst DC. Plants as sources of antimalarial drugs. Part 1.In vitro test methods for the evaluation of crude extracts from plants. Planta Med 1985;51:394–8.Google Scholar
  22. 22.
    El-Feraly FS, Al-Meshal IA, Khalifa SI. Epi-deoxy-arteannuin B and 6,7-dehydroartemisinic acid fromArtemisia annua. J Nat Prod 1989;52:196–8.Google Scholar
  23. 23.
    Jeremic D, Jokic A, Behbud A, Stevanovic M. A new type of sesquiterpene lactone isolated fromArtemisia annua L. arteannuin B. Tetrahedron Lett 1973;32:3039–42.Google Scholar
  24. 24.
    Misra LN. Arteannuin-C, a sesquiterpene lactone fromArtemisia annua. Phytochemistry 1986;25: 2892–3.Google Scholar
  25. 25.
    Roth RJ, Acton N. Isolation of epi-deoxyarteannuin B fromArtemisia annua. Planta Med 1987;53:576.Google Scholar
  26. 26.
    Acton N, Klayman DL. Artemisitene, a new sesquiterpene lactone endoperoxide fromArtemisia annua. Planta Med 1985;51:441.Google Scholar
  27. 27.
    Xu XX, Zhu J, Hung DZ, Zhou WS. Total synthesis of arteannuin and deoxyarteannuin. Tetrahedron 1986;42:819–28.Google Scholar
  28. 28.
    Allen KG, Banthorpe DV, Charlwood BV, Voller CM. Biosynthesis of artemisia ketone in higher plants. Phytochemistry 1977;16:79–83.Google Scholar
  29. 29.
    Risinger GE, Karimian K, Jungk ST, Simpson JB. On the biosynthesis of artemisia ketone and bakuchiol. Experientia 1978;34:1121–2.Google Scholar
  30. 30.
    Lawrence BM. Annual wormwood oil. Progr Ess Oils 1982;7:43–4.Google Scholar
  31. 31.
    Banthorpe DV, Christou PN, Pink CR, Watson DG. Metabolism of linaloyl, neryl and geranyl pyrophosphates inArtemisia annua. Phytochemistry 1983;22:2465–8.Google Scholar
  32. 32.
    Satar S. Chemische Charakterisierung ätherischer Öle aus mongolischen Arten der GattungArtemisia L. Pharmazie 1986;41:819–20.Google Scholar
  33. 33.
    Rücker G, Mayer R, Manns D.α- Andβ-myrcene hydroperoxide fromArtemisia annua. J Nat Prod 1987;50:287–9.Google Scholar
  34. 34.
    Djermanovic M, Jokić A, Mladenović S, Stefanović M. Quercetagetin 6,7,3′,4′-tetramethyl ether: a new flavonol fromArtemisia annua. Phytochemistry 1975;14:1873.Google Scholar
  35. 35.
    Jeremic D, Stefanović M, Doković D, Milosavljević S. Flavonols fromArtemisia annua L. Bull Soc Chim Beograd 1979;44:615–8.Google Scholar
  36. 36.
    Yang S, Roberts M, Phillipson JD. Methoxylated flavones fromArtemisia annua l. J Pharm Pharmacol 1988;40(Suppl):106P.Google Scholar
  37. 37.
    Bhardwaj DK, Jain RK, Jain SC, Manchanda CK. Constitution ofArtemisia annua flavone. Proc Indian Nat Sci Acad 1985;51A:741–5.Google Scholar
  38. 38.
    Shilin Y, Roberts MF, Phillipson JD. Methoxylated flavones and coumarins fromArtemisia annua. Phytochemistry 1989;28:1509–11.Google Scholar
  39. 39.
    Ulubelen A, Halfon B. Phytochemical investigation of the herb ofArtemisia annua. Planta Med 1976;29: 258–60.Google Scholar
  40. 40.
    Bohlmann F, Arndt C, Bornowski H. Über weitere Polyine aus dem TribusAnthemideae L. Chem Ber 1960;93:1937–44.Google Scholar
  41. 41.
    Bohlmann F, Zdero C. Constituents ofArtemisia afra. Phytochemistry 1972;11:2329–30.Google Scholar
  42. 42.
    Liersch R, Soicke H, Stehr C, Tüllner HU. Formation of artemisinin inArtemisia annua during one vegetation period. Planta Med 1986;52:387–90.Google Scholar
  43. 43.
    Balachandran S, Vishwakarma RA, Popli SP. Chemical investigation of someArtemisia species: search for artemisinin or other related sesquiterpene lactones with a peroxide bridge. Indian J Pharm Sci 1987;49:152–4.Google Scholar
  44. 44.
    Acton N, Klayman DL, Rollman IJ. Reductive electrochemical HPLC assay for artemisinin (qinghaosu). Planta Med 1985;51:445–6.Google Scholar
  45. 45.
    Singh A, Vishwakarma RA, Husain A. Evaluation ofArtemisia annua strains for higher artemisinin production. Planta Med 1988;54:475–6.Google Scholar
  46. 46.
    Roth RJ, Acton N. The isolation of sesquiterpenes fromArtemisia annua. J Chem Educ 1989;66:349–50.Google Scholar
  47. 47.
    ElSohly HN, Croom EM, ElSohly MA. Analysis of the antimalarial sesquiterpene artemisinin inArtemisia annua by high-performance liquid chromatography (HPLC) with postcolumn derivatization and ultraviolet detection. Pharm Res 1987;4:258–60.Google Scholar
  48. 48.
    Steinegger E, Hänsel R. Lehrbuch der Pharmakognosie und Phytopharmazie. Berlin: Springer-Verlag, 1988:154–75.Google Scholar
  49. 49.
    Akhila A, Thakur RS, Popli SP. Biosynthesis of artemisinin inArtemisia annua. Phytochemistry 1987;26:1972–30.Google Scholar
  50. 50.
    Kudakasseril GJ, Lam L, Staba EJ. Effect of sterol inhibitors on the incorporation of14C-isopentenyl pyrophosphate into artemisinin by a cell-free system fromArtemisia annua tissue cultures and plants. Planta Med 1987;53:280–4.Google Scholar
  51. 51.
    Roth RJ, Acton N. Isolation of arteannuic acid fromArtemisia annua. Planta Med 1987;53:501–2.Google Scholar
  52. 52.
    El-Feraly FS, Al-Meshal IA, Al-Yahya MA, Hifnawy MS. On the possible role of qinghao acid in the biosynthesis of artemisinin. Phytochemistry 1986;25: 2777–8.Google Scholar
  53. 53.
    Acton N, Klayman DL, Rollman IJ, Novotny JF. Isolation of artemisinin (qinghaosu) and its separation from artemisitene using the Ito multilayer coil separator-extractor and isolation of arteannuin B. J Chromatogr 1986;355:448–50.Google Scholar
  54. 54.
    Niu X, Ho L, Ren Z, Song Z. Metabolic fate of qinghaosu in rats; a new TLC densitometric method for its determination in biological material. Eur J Drug Metab Pharmacokinet 1985;10:55–9.Google Scholar
  55. 55.
    Zhao SS, Zeng MY. Spektrometrische Hochdruck-Flüssigkeits chromatographische (HPLC) Untersuchungen zur Analytik von Qinghaosu. Planta Med 1985;51:233–7.Google Scholar
  56. 56.
    Zhao S, Zeng MY. Application of precolumn reaction to high-performance liquid chromatography of qinghaosu in animal plasma. Anal Chem 1986;58:289–92.Google Scholar
  57. 57.
    Zhao S. High-performance liquid chromatographic determination of artemisinine (qinghaosu) in human plasma and saliva. Analyst 1987;112:661–4.Google Scholar
  58. 58.
    Edlund PO, Westerlund D, Carlqvist J, Wu BL, Jin Y. Determination of artesunate and dihydroartemisinine in plasma by liquid chromatography with postcolumn derivatization and UV-detection. Acta Pharm Suec 1984;21:223–34.Google Scholar
  59. 59.
    Zhou ZM, Anders JC, Chung H, Theoharides AD. Analysis of artesunic acid and dihydroqinghaosu in blood by high-performance liquid chromatography with reductive electrochemical detection. J Chromatogr 1987;414:77–90.Google Scholar
  60. 60.
    Theoharides AD, Peggins JO, Brewer TG, Melendez V, Boyd JM. Automated sample deoxygenation and injection using a programmable autoinjector and a valve-switching apparatus for HPLC with reductive electrochemical detection. LC-GC 1989;7:925–8.Google Scholar
  61. 61.
    Zhou Z, Huang Y, Xie G, et al. HPLC with polarographic detection of artemisinin and its derivatives and application of the method to the pharmacokinetic study of artemether. J Liq Chromatogr 1988;11:1117–37.Google Scholar
  62. 62.
    Zhao S. Equilibrium betweenα- andβ-isomers of dihydroartemisinine and its multiple-peaks in high-performance liquid chromatography. Chromatographia 1986;22:77–80.Google Scholar
  63. 63.
    Luo X, Xie M, Zou A. Sub-nanogram detection of dihydroartemisinin after chemical derivatization with diacetyldihydrofluorescein followed by high-performance liquid chromatography and UV absorption. Chromatographia 1987;23:112–4.Google Scholar
  64. 64.
    Theoharides AD, Smyth MH, Ashmore RW, et al. Determination of dihydroqinghaosu in blood by pyrolysis gas chromatography/mass spectrometry. Anal Chem 1988;60:115–20.Google Scholar
  65. 65.
    Zhang XQ, Xu LX. Determination of qinghaosu (arteannuin) inArtemisia annua L. by pulse polarography. Yaoxue Xuebao 1985;20:383–6.Google Scholar
  66. 66.
    Song ZY, Zhao KC, Liang XT, Liu CX, Yi MG. Radioimmunoassay of qinghaosu and artesunate. Yaoxue Xuebao 1985;20:610–4.Google Scholar
  67. 67.
    China Cooperative Research Group on Qinghaosu and Its Derivatives as Antimalarials. Metabolism and pharmacokinetics of qinghaosu and its derivatives. J Trad Chin Med 1982;2:25–30.Google Scholar
  68. 68.
    Zeng M, Li L, Chen S, et al. Chemical transformations of qinghaosu, a peroxidic antimalarial. Tetrahedron 1983;39:2941–6.Google Scholar
  69. 69.
    Lin AJ, Klayman DL, Hoch JM, Silverton JV, George CF. Thermal rearrangement and decomposition products of artemisinin (qinghaosu). J Org Chem 1985;50:4504–8.Google Scholar
  70. 70.
    Luo XD, Yeh HJC, Brossi A. The chemistry of drugs. VI. Thermal decomposition of qinghaosu. Heterocycles 1985;23:881–7.Google Scholar
  71. 71.
    Schmid G, Hofheinz W. Total synthesis of qinghaosu. J Am Chem Soc 1983;105:624–5.Google Scholar
  72. 72.
    Jung M, ElSohly HN, Croom EM. Practical conversion of artemisinic acid into desoxyartemisinin. J Org Chem 1986;51:5417–9.Google Scholar
  73. 73.
    Zhou WS. Total synthesis of arteannuin (quinghaosu) and related compounds. Pure Appl Chem 1986;58: 817–24.Google Scholar
  74. 74.
    Avery MA, Jennings-White C, Chong WKM. The total synthesis of (+)-artemisinin and (+)-9-desmethylartemisinin. Tetrahedron Lett 1987;28:4629–32.Google Scholar
  75. 75.
    Salunkhe AM, Phadke AS, Kulkarni S. An efficient & simple synthesis of some key intermediates for artemisinin. Ind J Chem 1988;27B:955–6.Google Scholar
  76. 76.
    Wu Y, Zhang J, Li J. Synthesis of arteannuin and its analogs — reconstruction of arteannuin from its degradation products. Huaxue Xuebao 1985;43:901–3.Google Scholar
  77. 77.
    Roth RJ, Acton N. A simple conversion of artemisinic acid into artemisinin. J Nat Prod 1989;52:1183–5.Google Scholar
  78. 78.
    Jung M, Yoo Y, ElSohly HN, McChesney JD. One-step stereospecific synthesis of (−)-arteannuin B. J Nat Prod 1987;50:972–3.Google Scholar
  79. 79.
    Acton N, Roth RJ. Synthesis of epideoxy- and deoxyarteannuin B. Phytochemistry 1989;28:3530–1.Google Scholar
  80. 80.
    Goldberg O, Deja I, Rey M, Dreiding AS. The synthesis of stereoisomers of arteannuin B. Helv Chim Acta 1980;63:2455–68.Google Scholar
  81. 81.
    Hoffmann HMR, Rabe J. Synthesis and biological activity ofα-methylene-τ-butyrolactones. Angew Chem Int Ed 1985;24:94.Google Scholar
  82. 82.
    Ye Z, Li Z, Li G, Fu X, Liu H, Gao M. Effects of qinghaosu and chloroquine on the ultrastructure of the erythrocytic stage ofP. falciparum in continuous cultivationin vitro. J Trad Chin Med 1983;3:95–102.Google Scholar
  83. 83.
    Phillipson JD, O'Neill MJ. Antimalarial and amoebicidal compounds from plants. Fitoterapia 1987;58:336–7.Google Scholar
  84. 84.
    Gu HM, Waki S, Zhu MY, et al. Fluorometric determination of antimalarial efficacy of artemisinin and artemether againstPlasmodium falciparum in vitro. Acta Pharmacol Sin 1988;9:160–3.Google Scholar
  85. 85.
    Ye ZG, Van Dyke K, Wimmer M. Effect of artemisinin (qinghaosu) and chloroquine on drug-sensitive and drug-resistant strains ofPlasmodium falciparum malaria: use of [2,8-3H]adenosine as an alternative to [G-3H]hypoxanthine in the assessment ofin vitro antimalarial activity. Exp Parasitol 1987;64:418–23.Google Scholar
  86. 86.
    Van Vianen PhH, Klayman DL, Lin AJ, et al.Plasmodium berghei: the antimalarial action of artemisinin and sodium artelinatein vivo andin vitro, studied by flow cytometry. Exp Parasitol 1990;70:115–23.Google Scholar
  87. 87.
    Li G, Guo X, Jin R, Wang Z, Jian H, Li Z. Clinical studies on treatment of cerebral malaria with qinghaosu and its derivatives. J Trad Chin Med 1982;2: 125–30.Google Scholar
  88. 88.
    China Cooperative Research Group on Qinghaosu and Its Derivatives as Antimalarials. The chemistry and synthesis of qinghaosu derivatives. J Trad Chin Med 1982;2:9–16.Google Scholar
  89. 89.
    Li ZL, Gu HM, Warhust DC, Peters W. Effects of qinghaosu and related compounds on incorporation of [G-3H]hypoxanthine byPlasmodium falciparum in vitro. Trans R Soc Trop Med Hyg 1983;77:522–3.Google Scholar
  90. 90.
    Gu HM, Lu BF, Qu ZX. Activities of 25 derivatives of artemisinine against chloroquine-resistantPlasmodium berghei. Acta Pharmacol Sin 1980;1:48–50.Google Scholar
  91. 91.
    Guan W, Huang W, Zhou Y, Gong J. Effectin vitro of artemisinin and its derivatives onPlasmodium falciparum. Acta Pharmacol Sin 1982;3:139–41.Google Scholar
  92. 92.
    Dutta GP, Bajpai R, Vishwakarma RA. Comparison of antimalarial efficacy of artemisinin (qinghaosu) and arteether againstPlasmodium cynomolgi B infection in monkeys. Trans R Soc Trop Med Hyg 1989;83:56–7.Google Scholar
  93. 93.
    Luo X, Yeh HJC, Brossi A, Flippen-Anderson JL, Gilardi R. The chemistry of drugs. Part IV. Configurations of antimalarials derived from qinghaosu: dihydroqinghaosu, artemether, and artesunic acid. Helv Chim Acta 1984;67:1515–22.Google Scholar
  94. 94.
    Acton N, Klayman DL. Conversion of artemisinin (qinghaosu) to iso-artemisitene and to 9-epi-artemisinin. Planta Med 1987;53:266–8.Google Scholar
  95. 95.
    Shang X, He CH, Zheng QT, Yang JJ, Liang XT. Chemical transformations of qinghaosu, a peroxidic antimalarial, II. Heterocycles 1989;28:421–4.Google Scholar
  96. 96.
    Tani S, Fukamiya N, Kiyokawa H, Musallam HA, Pick RO, Lee KH. Antimalarial agents. 1.α- Santonin-derived cyclic peroxide as potential antimalarial agent. J Med Chem 1985;28:1743–4.Google Scholar
  97. 97.
    Kepler JA, Philip A, Lee YW, Musallam HA, Carroll FI. Endoperoxides as potential antimalarial agents. J Med Chem 1987;30:1505–9.Google Scholar
  98. 98.
    Adam W, Kliem U, Mosandl T, Peters EM, Peters K, Von Schnering HG. Preparative visible-layer photochemistry: qinghaosu-type 1,2,4-trioxanes by molecular oxygen trapping of Paterno-Büchi triplet 1,4-diradicals derived from 3,4-dihydro-4,4-dimethyl-2H-pyran-2-one and quinones. J Org Chem 1988;53:4986–92.Google Scholar
  99. 99.
    Adam W, Kliem U, Lucchini V. Preparative UV-VIS laser photochemistry: photocycloadditions of methylenelactones with benzophenone and p-benzoquine. Oxygen trapping of Paterno-Büchi triplet 1,4-diradicals as model reactions for quinghaosu-type 1,2,4-trioxanes. Liebigs Ann Chem 1988;869–75.Google Scholar
  100. 100.
    Vennerstrom JL. Amine peroxides as potential antimalarials. J Med Chem 1989;32:64–7.Google Scholar
  101. 101.
    Avery MA, Jennings-White C, Chong WKM. Synthesis of a C,D-ring fragment of artemisinin. J Org Chem 1989;54:1789–92.Google Scholar
  102. 102.
    Avery MA, Jennings-White C, Chong WKM. Simplified analogues of the antimalarial artemisinin: synthesis of 6,9-desmethylartemisinin. J Org Chem 1989;54:1792–5.Google Scholar
  103. 103.
    Binns F, Wallace TW. An unsuccessful approach to the framework of the antimalarial, arteether. Tetrahedron Lett 1989;30:1125–8.Google Scholar
  104. 104.
    Lin AJ, Klayman DL, Milhous WK. Antimalarial activity of new water-soluble dihydroartemisinin derivatives. J Med Chem 1987;30:2147–50.Google Scholar
  105. 105.
    Lin AJ, Lee M, Klayman DL. Antimalarial activity of new water-soluble dihydroartemisinin derivatives. 2. Stereospecificity of the ether side chain. J Med Chem 1989;32:1249–52.Google Scholar
  106. 106.
    Ye B, Wu YL. Syntheses of carba-analogues of qinghaosu. Tetrahedron 1989;45:7287–90.Google Scholar
  107. 107.
    Elmarakby SA, El-Feraly FS, ElSohly HN, Croom EM, Hufford CD. Microbial transformation studies on arteannuin B. J Nat Prod 1987;50:903–9.Google Scholar
  108. 108.
    Elmarakby SA, El-Feraly FS, ElSohly HN, Croom EM, Hufford CD. Microbial transformations of artemisinic acid. Phytochemistry 1988;27:3089–91.Google Scholar
  109. 109.
    Lee IS, ElSohly HN, Croom EM, Hufford CD. Microbial metabolism studies of the antimalarial sesquiterpene artemisinin. J Nat Prod 1989;52:337–41.Google Scholar
  110. 110.
    China Cooperative Research Group on Qinghaosu and Its Derivatives as Antimalarials. Antimalarial efficacy and mode of action of qinghaosu and its derivatives in experimental models. J Trad Chin Med 1982;2:17–24.Google Scholar
  111. 111.
    Thaithong S, Beale GH. Susceptibility of Thai isolates ofPlasmodium falciparum to artemisinine (qinghaosu) and artemether. Bull WHO 1985;63:617–9.Google Scholar
  112. 112.
    Sinha S, Choudhury DS, Ghosh SK, Devi CU, Sharma VP.In vitro chloroquine resistantPlasmodium falciparum in Calcutta and its sensitivity to qinghaosu (artemisitene). Ind J Malariol 1987;24:107–9.Google Scholar
  113. 113.
    Chen K, Lin B, Zhang J, Shao B. Experimental therapy of 7 antimalarials in mice infected with pyronaridine-resistantPlasmodium berghei. Acta Pharmacol Sin 1983;4:269–73.Google Scholar
  114. 114.
    Dutta GP, Bajpai R, Vishwakarma RA. Blood schizontocidal activity of artemisinin (qinghaosu) and arteether againstPlasmodium berghei. Ind J Parasitol 1987;11:253–7.Google Scholar
  115. 115.
    Geary TG, Divo A, Jensen JB. Stage specific actions of antimalarial drugs onPlasmodium falciparum in culture. Am J Trop Med Hyg 1989;40:240–4.Google Scholar
  116. 116.
    Lee P, Ye Z, Van Dyke K, Kirk RG. X-ray microanalysis ofPlasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition. Am J Trop Med Hyg 1988;39:157–65.Google Scholar
  117. 117.
    Peters W, Li ZL, Robinson BL, Warhurst DC. The chemotherapy of rodent malaria, XL. The action of artemisinin and related sesquiterpenes. Ann Trop Med Parasitol 1986;80:483–9.Google Scholar
  118. 118.
    Coleman RE, Vaughan JA, Hayes DO, Hollingdale MR, DoRosario VE. Effect of mefloquine and artemisinin on the sporogenic cycle ofPlasmodium berghei ANKA inAnopheles stephensi mosquitoes. Acta Leiden 1988;57:61–74.Google Scholar
  119. 119.
    Dutta GP, Bajpai R, Vishwakarma RA. Artemisinin (qinghaosu) — a new gametocytocidal drug for malaria. Chemotherapy 1989;35:200–7.Google Scholar
  120. 120.
    Yang Q, Shi W, Li R, Gan J. The antimalarial and toxic effect of artesunate on animal models. J Trad Chin Med 1982;2:99–103.Google Scholar
  121. 121.
    Ellis DS, Li ZL, Gu HM, et al. The chemotherapy of rodent malaria. XXXIX. Ultrastructural changes following treatment with artemisinine ofPlasmodium berghei infection in mice, with observations of the localization of [3H]-dihydroartemisinine inP. falciparum in vitro. Ann Trop Med Parasitol 1985;79:367–74.Google Scholar
  122. 122.
    Jiang JB, Jacobs G, Liang DS, Aikawa M. Qinghaosuinduced changes in the morphology ofPlasmodium innui. Am J Trop Med Hyg 1985;34:424–8.Google Scholar
  123. 123.
    Browning PM, Bisby RH. Qinghaosu does not affect the major thermotropic phase transition in model membranes of dipalmitoylphosphatidylcholine. Mol Biochem Parasitol 1989;32:57–60.Google Scholar
  124. 124.
    Gu HM, Warhurst DC, Peters W. Hemolysis induced by artemisinin and its derivativesin vitro. Acta Pharmacol Sin 1986;7:269–72.Google Scholar
  125. 125.
    Gu HM, Warhurst DC, Peters W. Rapid action of qinghaosu and related drugs on incorporation of [3H]isoleucine byPlasmodium falciparum in vitro. Biochem Pharmacol 1983;32:2463–6.Google Scholar
  126. 126.
    Whaun J, Brown N, Milhous Wet al. Qinghaosu, a potent antimalarial, perturbs polyamine metabolism in human malaria cultures. In: Imahori I, ed. Polyamines. Basic and clinical aspects. Utrecht: VNU Science Press, 1985:301–10.Google Scholar
  127. 127.
    Gu HM, Warhurst DC, Peters W. Uptake of [3H]dihydroartemisinine by erythrocytes infected withPlasmodium falciparum in vitro. Trans R Soc Trop Med Hyg 1984;78:265–70.Google Scholar
  128. 128.
    Zhao Y, Hanton WK, Lee KH. Antimalarial agents. 2. Artesunate, an inhibitor of cytochrome oxidase activity inPlasmodium berghei. J Nat Prod 1986;49:139–42.Google Scholar
  129. 129.
    Elford BC. L-Glutamine influx in malaria-infected erythrocytes: a target for antimalarials? Parasitol Today 1986;2:309–12.Google Scholar
  130. 130.
    Ames JR, Ryan MD, Klayman DL, Kovacic P. Charge transfer and oxy radicals in antimalarial action. Quinones, dapsone metabolites, metal complexes, iminium ions, and peroxides. J Free Rad Biol Med 1985;1:353–61.Google Scholar
  131. 131.
    Krungkrai SR, Yuthavong Y. The antimalarial action ofPlasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress. Trans R Soc Trop Med Hyg 1987;81:710–4.Google Scholar
  132. 132.
    Meshnick SR, Lin FB, Pan HZ, et al. Activated oxygen mediates the antimalarial activity of qinghaosu. J Cell Biochem 1989;(Suppl O):143.Google Scholar
  133. 133.
    Levander OA, Ager Jr AL, Morris VC, May RG. Qinghaosu, dietary vitamin E, selenium, and cod-liver oil: effect on the susceptibility of mice to the malarial parasitePlasmodium yoelii. Am J Clin Nutr 1989;50:346–52.Google Scholar
  134. 134.
    Chawira AN, Warhurst DC. The effect of artemisinin combined with standard antimalarials against chloroquine-sensitive and chloroquine-resistant strains ofPlasmodium falciparum in vitro. J Trop Med Hyg 1987;90:1–8.Google Scholar
  135. 135.
    Ye Z, Van Dyke K, Castranova V. The potentiating action of tetrandrine in combination with chloroquine or qinghaosu against chloroquine-sensitive and resistantfalciparum malaria. Biochem Biophys Res Comm 1989;165:758–65.Google Scholar
  136. 136.
    Chawira AN, Warhurst DC, Peters W. Drug combination studies with qinghaosu (artemisinin) against sensitive and resistant strains of rodent malaria. Trans R Soc Trop Med Hyg 1986;80:334.Google Scholar
  137. 137.
    Elford BC, Roberts MF, Phillipson JD, Wilson RJM. Potentiation of the antimalarial activity of qinghaosu by methoxylated flavones. Trans R Soc Trop Med Hyg 1987;81:434–6.Google Scholar
  138. 138.
    Inselburg J. Induction and isolation of artemisininresistant mutants ofPlasmodium falciparum. Am J Trop Med Hyg 1985;34:417–8.Google Scholar
  139. 139.
    Chawira AN, Warhurst DC, Peters W. Qinghaosu resistance in rodent malaria. Trans R Soc Trop Med Hyg 1986;80:477–80.Google Scholar
  140. 140.
    Cooke DW, Lallinger GJ, Durack DT.In vitro sensitivity ofNaegleria fowleri to qinghaosu and dihydroqinghaosu. J Parasitol 1987;73:411–3.Google Scholar
  141. 141.
    Le WJ, You JQ, Yang YQ, et al. Studies on the efficacy of artemether in experimental schistosomiasis. Acta Pharmacol Sin 1982;17:87–93.Google Scholar
  142. 142.
    Le WJ, You JQ, Mei JY. Chemotherapeutic effect of artesunate in experimental schistosomiasis. Acta Pharmacol Sin 1983;18:619–21.Google Scholar
  143. 143.
    Shuhua X, Catto BA.In vitro andin vivo studies on the effect of artemether onSchistosoma mansoni. Antimicrob Agents Chemother 1989;33:1557–62.Google Scholar
  144. 144.
    Zhuang GK, Zou MX, Xu X. Clinical studies on treatment of lupus erythematosus withArtemisinin apeacea H. Nat Med J Chin 1982;62:365–7.Google Scholar
  145. 145.
    Qian RS, Ki ZL, Yu JL. Immunosuppressive and antivirus actions of qinghaosu. J Trad Chin Med 1981;6:63–6.Google Scholar
  146. 146.
    Lin PY, Pan JQ, Feng ZM, Zhang D, Yang WL. Immunopharmacologic activity of artemisinin (qinghaosu). Asia Pac J Pharmacol 1989;3:197–200.Google Scholar
  147. 147.
    Duke SO, Vaughn KC, Croom EM, ElSohly HN. Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed Sci 1987;35:499–505.Google Scholar
  148. 148.
    Okuno I, Uchida K, Namba T. Choleretic activity ofArtemisia plants. Yakugaku Zasshi 1984;104:384–9.Google Scholar
  149. 149.
    Kar K, Shankar G, Bajpai R, Dutta GP, Vishwakarma RA. Artemisinin: a potent antimalarial agent: general pharmacological properties. Ind J Parasitol 1988;12:209–12.Google Scholar
  150. 150.
    Kar K, Nath A, Bajpai R, Dutta GP, Vishwakarma RA. Pharmacology ofα/β arteether — a potential antimalarial drug. J Ethnopharmacol 1989;27:297–305.Google Scholar
  151. 151.
    Li G, Guo X, Jian H, et al. Observation on the efficacy of qinghaosu suppository in 100 cases offalciparum malaria. J Trad Chin Med 1985;5:159–61.Google Scholar
  152. 152.
    Xuan W, Zhao Y, Li A, Xie P, Cai Y. Experimental studies on the antimalarial activity estimation by artesunate and artemether preparations per skin absorption. J Trad Chin Med 1988;8:282–4.Google Scholar
  153. 153.
    China Cooperative Research Group in Qinghaosu and Its Derivatives as Antimalarials. Clinical studies on the treatment of malaria with qinghaosu and its derivatives. J Trad Chin Med 1982:2:45–50.Google Scholar
  154. 154.
    Jiang JB, Li GQ, Guo XB, Kong YC, Arnold K. Antimalarial activity of mefloquine and qinghaosu. Lancet 1982;2:285–9.Google Scholar
  155. 155.
    Li G, Arnold K, Guo X, Jian H, Fu L. Randomised comparative study of mefloquine, qinghaosu, and pyrimethamine-sulfadoxine in patients withfalciparum malaria. Lancet 1984;2:1360–1.Google Scholar
  156. 156.
    Myint PT, Shwe T, Soe L, Htut Y, Myinth W. Clinical study of the treatment of cerebral malaria with artemether (qinghaosu derivative). Trans R Soc Trop Med Hyg 1989;83:72.Google Scholar
  157. 157.
    Myint PT, Shwe T. The efficacy of artemether (qinghaosu) inPlasmodium falciparum andP. vivax in Burma. Southeast Asian J Trop Med Public Health 1986;17:19–22.Google Scholar
  158. 158.
    Myint PT, Shwe T. A case of black water fever treated with peritoneal dialysis and artemether (qinghaosu derivative). Southeast Asian J Trop Med Public Health 1987;18:97–100.Google Scholar
  159. 159.
    China Cooparative Research Group on Qinghaosu and Its Derivatives as Antimalarials. Studies on the toxicity of qinghaosu and its derivatives. J Trad Chin Med 1982;2:31–8.Google Scholar
  160. 160.
    Qang D, Lin X. Effect of qinghaosu (artemisinine) suspension in oil on ultrastructure of myocardium in rhesus monkeys. Acta Pharmacol Sin 1983;4:191–4.Google Scholar
  161. 161.
    Chen L, Wang M, Sun W, Liu M. Embryotoxicity and teratogenicity studies on artemether in mice, rats and rabbits. Acta Pharmacol Sin 1984;5:118–22.Google Scholar
  162. 162.
    Wang T. Follow-up observation on the therapeutic effects and remote reactions of artemisinin (qinghaosu) and artemether in treating malaria in pregnant woman. J Trad Chin Med 1989;9:28–30.Google Scholar
  163. 163.
    Zhu D, Huang B, Chen Z, et al. Isolation and identification of the metabolite of artemisinine in human. Acta Pharmacol Sin 1983;4:194–7.Google Scholar
  164. 164.
    White NJ. The treatment offalciparum malaria. Parasitol Today 1988;4:10–4.Google Scholar
  165. 165.
    Gutteridge WE. Antimalarial drugs currently in development. J R Soc Med 1989;82(Suppl 17):63–6.Google Scholar
  166. 166.
    Nair MSR, Acton N, Klayman DL, Kendrick K, Basile DV, Mante S. Production of artemisinin in tissue culture ofArtemisia annua. J Nat Prod 1986;49:504–7.Google Scholar
  167. 167.
    Sumita J, Timir BJ, Shashi BM. Tissue culture ofArtemisia annua L.— a potential source of an antimalarial drug. Current Sci 1988;57:344–6.Google Scholar
  168. 168.
    Park JM, Hu WS, Staba EJ. Cultivation ofArtemisia annua L. plantlets in a bioreactor containing a single carbon and a single nitrogen source. Biotech Bioeng 1989;34:1209–13.Google Scholar
  169. 169.
    Tawfiq NK, Anderson LA, Roberts MF, Phillipson MF, Bray DH, Warhurst DC. Antiplasmodial activity ofArtemisia annua plant cell cultures. Plant Cell Rep 1989;8:425–8.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1990

Authors and Affiliations

  • Herman J. Woerdenbag
    • 1
  • Charles B. Lugt
    • 2
  • Niesko Pras
    • 1
  1. 1.Department of Pharmacognosy, University Centre for PharmacyUniversity of GroningenAW Groningenthe Netherlands
  2. 2.ACF Chemie BVAC Maarssenthe Netherlands

Personalised recommendations