Journal of thermal analysis

, Volume 48, Issue 2, pp 247–258 | Cite as

Ferrimagnetic spinels in hydrothermal and thermal treatment of MnxFe2−2x(OH)6−4x

  • W. Wolski
  • E. Wolska
  • J. Kaczmarek
  • P. Piszora
Article

Abstract

Products of hydrothermal treatment of the initial amorphous system MnxFe2−2x(OH)6−4x for 0≤x1 in 0.1x intervals, and products of their further thermal treatment, were examined by chemical analysis, X-ray, IR, and DTA techniques supported by magnetic measurements. After hydrothermal growth for lowx, hematite and goethite phases occurred. Although the goethite phase was still identifiable atx=0.6, formation of a solid solution with the isostructural groutite was not found. The ferrimagnetic spinel phase, which resists heating up to 400‡C, was present at 0.5≤x≤0.9. At higher temperatures, it transformed into the rhombohedral hematite type phase or into the cubic bixbyite phase. AtT≥900‡C, a ferrimagnetic spinel structure reappeared up tox=0.8. For x=0.9, the low- and high-temperature forms of the hausmannite phase occurred, forx= 1 passing from one form into another through Mn5O8 and partritgeite.

For a primary mixture Mn0.5Fe(OH)4, corresponding to the manganese ferrite structure, the lattice parameter of which passes from 8.43 å through 8.33 å to 8.50 å, the probable crystallochemical formula was suggested.

Keywords

ferrimagnetic spinels system MnxFe2−2x(OH)6−4x 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. T. Johnson, A. Noordermeer, M. M. E. Severin and W. A. M. Meeuwissen, J. Magn. Magn. Mater., 116 (1992). 169.CrossRefGoogle Scholar
  2. 2.
    E. Blums, M. M. Maiorov and G. Kronkalns, IEEE Trans. Magn., 29 (1993) 3267.CrossRefGoogle Scholar
  3. 3.
    G. M. Sutariya, R. V. Upadhyay and R. V. Mehta, J. Colloid Interface Sci., 155 (1993) 152.CrossRefGoogle Scholar
  4. 4.
    E. Segal, M. Brezeanu, V. Bujoreanu and C. Gheorghies, Thermochim. Acta, 196 (1992) 7.CrossRefGoogle Scholar
  5. 5.
    R. V. Upadhyay, K. J. Davies, S. Wells and S. W. Charles, J. Magn. Magn. Mater., 132 (1994) 249; 139 (1994) 249.CrossRefGoogle Scholar
  6. 6.
    R. V. Mehta, R. V. Upadhyay, B. A. Dasannacharya, P. S. Goyal and K. S. Rao, J. Magn. Magn. Mater., 132 (1994) 153.CrossRefGoogle Scholar
  7. 7.
    Y. Yamamoto and A. Makino, J. Magn. Magn. Mater., 133 (1994) 500.CrossRefGoogle Scholar
  8. 8.
    F. K. Lotgering, J. Phys. Chem. Solids, 25 (1964) 95.CrossRefGoogle Scholar
  9. 9.
    O. Glemser, G. Gattow and H. Meisiek, Z. Anorg. Allg. Chem., 309 (1961) 1.CrossRefGoogle Scholar
  10. 10.
    H. R. Oswald and M. J. Wampetich, Helv. Chim. Acta, 50 (1967) 2023.CrossRefGoogle Scholar
  11. 11.
    J. Kaczmarek and E. Wolska, J. Solid State Chem., 103 (1993) 387.CrossRefGoogle Scholar
  12. 12.
    J. Kaczmarek and E. Wolska, Solid State Ionics, 63–65 (1993) 633.CrossRefGoogle Scholar
  13. 13.
    E. Wolska and J. Kaczmarek, Solid State Phenomena, 39–40 (1994) 153.Google Scholar
  14. 14.
    W. Wolski and J. Kaczmarek, J. Magn. Magn. Mater., 40 (1983) 190.CrossRefGoogle Scholar
  15. 15.
    W. Stiers and U. Schwertmann, Geochim. Cosmochim. Acta, 49 (1985) 1909.CrossRefGoogle Scholar
  16. 16.
    R. E. Vandenberghe, A. E. Verbeeck, E. De Grave and W. Stiers, Hyperfine Interact., 29 (1986) 1157.Google Scholar
  17. 17.
    R. M. Cornell and R. Giovanoli, Clays Clay Miner., 35 (1987) 11.Google Scholar
  18. 18.
    M. H. Ebinger and D. G. Schulze, Clays Clay Miner., 37 (1989) 151.Google Scholar
  19. 19.
    J. W. Gruner, Am. Miner., 32 (1947) 654.Google Scholar
  20. 20.
    R. L. Collin and W. N. Lipscomb, Acta Crystallogr., 2 (1949) 104.CrossRefGoogle Scholar
  21. 21.
    L. S. D. Glasser and L. Ingram, Acta Crystallogr., B 24 (1968) 1233.Google Scholar
  22. 22.
    J. Kaczmarek, PhD Thesis, Poznań 1990.Google Scholar
  23. 23.
    J. Pattanayak and V. S. Rao, J. Mater. Sci. Lett., 8 (1989) 1405.CrossRefGoogle Scholar
  24. 24.
    J. Pattanayak and H. S. Maiti, J. Mater. Sci. Lett., 9 (1990) 414.CrossRefGoogle Scholar
  25. 25.
    H. J. Van Hook and M. L. Keith, Am. Miner., 43 (1958) 69.Google Scholar
  26. 26.
    E. Wolska, Z. Kristallogr., 154 (1981) 69.Google Scholar
  27. 27.
    E. Wolska, Solid State Ionics, 28–30 (1988) 1349.CrossRefGoogle Scholar
  28. 28.
    E. Wolska and U. Schwertmann, Z. Kristallogr., 189 (1989) 223.Google Scholar
  29. 29.
    J. Smit and H. P. J. Wijn, Ferrites, Philips, Eidhoven 1959, p. 157.Google Scholar
  30. 30.
    H. H. Kedesdy and A. Tauber, J. Am. Ceram. Soc., 39 (1956) 425.Google Scholar
  31. 31.
    F. K. Lotgering, Philips Res. Repts, 20 (1965) 320.Google Scholar
  32. 32.
    M. A. Denecke, W. Gun\er, G. Buxbaum and P. Kuske, Mater. Res. Bull., 27 (1992) 507.CrossRefGoogle Scholar
  33. 33.
    H. Yasuoka, A. Hirai, T. Shinio, M. Kiyama, Y. Bando and T. Tokada, J. Phys. Soc. Jap., 22 (1967) 174.CrossRefGoogle Scholar
  34. 34.
    J. B. Goodenough and A. L. Loeb, Phys. Rev., 98 (1955) 391.CrossRefGoogle Scholar
  35. 35.
    R. D. Shannon, Acta Crystallogr., A 32 (1976) 751.Google Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • W. Wolski
    • 1
  • E. Wolska
    • 1
  • J. Kaczmarek
    • 1
  • P. Piszora
    • 1
  1. 1.Department of MagnetochemistryAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations