Advertisement

Journal of thermal analysis

, Volume 46, Issue 5, pp 1271–1282 | Cite as

Non-isothermal kinetics of CrO3 decomposition pathways in air

  • Nasr E. Fouad
Article

Abstract

The course of the non-isothermal decomposition of CrO3 in air was explored kinetically, by using a number of widely accepted methods. The credibility of the values obtained from a given kinetic parameter (the reaction order, the activation energy and the frequency factor) was justified on the grounds of (i) a multiple correlation coefficient, and (ii) the merits and demerits of the method adopted. The results obtained may help towards a characterization of the non-isothermal conditions under which the encountered decomposition events and products could be resolved. The study was motivated by the results of previous physicochemical characterization studies [1, 2], in which catalytically important intermediates CrOx(3<x<6) were structurally identified.

Keywords

CrO3 kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Zaki and R. B. Fahim, J. Thermal Anal., 31 (1986) 825.CrossRefGoogle Scholar
  2. 2.
    N. E. Fouad, Bull. Fac. Sci. Assiut Univ., Assiut, Egypt, 22, 1-B (1993) 55.Google Scholar
  3. 3.
    T. V. Rode, Oxygen Compounds of Chromium Catalysts, Izd. Akad, Nauk SSSR, Moscow 1962, pp. 72–95.Google Scholar
  4. 4.
    T. V. Rode, in J. P. Redfern (Ed), Thermal Analysis, Macmillan, London 1965, pp. 122–123.Google Scholar
  5. 5.
    H. Park, Bull. Chem. Soc. Japan, 45 (1972) 2749.Google Scholar
  6. 6.
    H. Park, ibid, 45 (1972) 2753.Google Scholar
  7. 7.
    A. F. Wells, Structural Inorganic Chemistry, 3rd edn., Clarendon Press, London 1978, p. 947.Google Scholar
  8. 8.
    A. Ellison, J. O. V. Oubridge and K. S. W. Sing, Trans, Faraday Soc., 66 (1970) 1004; A. Ellison and K. S. W. Sing, J. Chem. Soc., Faraday Trans. I, 74 (1978) 2807.Google Scholar
  9. 9.
    M. I. Zaki, N. E. Fouad, J. Leyrcr and H. Knözinger, Appl. Catal., 21 (1986) 359.CrossRefGoogle Scholar
  10. 10.
    R. B. Fahim, M. I. Zaki and R. M. Gabr, Surf. Technol., 12 (1982) 317.CrossRefGoogle Scholar
  11. 11.
    R. B. Fahim, M. I. Zaki and R. M. Gabr, Appl. Catal., 4 (1982) 189.CrossRefGoogle Scholar
  12. 12.
    C. Zener, Phys. Rev., 82 (1951) 403.CrossRefGoogle Scholar
  13. 13.
    G.-M. Schwab and S. B. Kanungo, Z. Phys. Chem., NF, 107 (1977) 109.Google Scholar
  14. 14.
    J. Šesták. V. Satava and W. W. Wendlandet, Thermochim. Acta, 7 (1973) 333.CrossRefGoogle Scholar
  15. 15.
    K. S. W. Sing and S. J. Gregg, Adsorption, Surface Area and Porosity, Academic press, London 1967, p. 3 and p. 309.Google Scholar
  16. 16.
    H. E. Kissinger, J. Anal. Chem., 29 (1959) 1702.Google Scholar
  17. 17.
    A. W. Coats and J. P. Redfern. Nature, 201 (1969) 2060.Google Scholar
  18. 18.
    E. S. Freeman and B. Carroll, J. Phys. Chem. 62 (1958) 394.CrossRefGoogle Scholar
  19. 19.
    A. Jerez, J. Thermal Anal., 26 (1983) 315.CrossRefGoogle Scholar
  20. 20(a).
    T. Ozawa, J. Thermal Anal., 2 (1970) 301CrossRefGoogle Scholar
  21. 20(b).
    T. Ozawa, J. Thermal Anal., 7 (1975) 601.CrossRefGoogle Scholar
  22. 21.
    Z. Lu and L. Yang, Thermochim. Acta, 188 (1991) 135.CrossRefGoogle Scholar
  23. 22.
    S. M. K. Nair and C. James, Thermochim. Acta, 96 (1985) 27.CrossRefGoogle Scholar
  24. 23.
    J. Šesták, in H. G. Wiedemann (Ed.), Thermal Analysis, Vol. 2, Birkhäuser Verlag, Basel 1972, p. 3.Google Scholar
  25. 24.
    G. W. Brindley, J. H. Sharp and B. N. N. Achar, in J. P. Redfern (Ed.), Thermal Analysis, Mcmillan, London 1965, p. 180.Google Scholar
  26. 25.
    In Ref. [7], p. 450.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • Nasr E. Fouad
    • 1
  1. 1.Chemistry Department, Faculty of ScienceMinia UniversityEl-MiniaEgypt

Personalised recommendations