Pharmaceutisch Weekblad

, Volume 14, Issue 5, pp 305–310 | Cite as

Drug transport across the blood-brain barrier

I. Anatomical and physiological aspects
  • J. B. M. M. Van Bree
  • A. G. de Boer
  • M. Danhof
  • D. D. Breimer


This review describes various aspects of the transport of drugs across the blood-brain barrier and comprises three parts. In this first part, the anatomical and physiological aspects of blood-brain transport are discussed. It appears that the blood-brain barrier has an anatomical basis at the endothelium of the capillary wall. This endothelium is characterized by the presence of very tight junctions. As a result, the transport by passive diffusion of drugs with a low lipophilicity, is restricted. For certain classes of closely related relatively hydrophilic compounds, however, the presence of specialized carrier systems has been demonstrated which may facilitate transport. Also evidence is presently available, that the permeability of the blood-brain barrier may be under active regulatory control. It is expected that improved knowledge of the anatomical and physiological aspects of the blood-brain barrier and its regulation will provide a scientific basis for the development of strategies to improve the transport of drugs into the central nervous system.


Anatomy Biological transport Blood-brain barrier Carrier proteins Cell membrane permeability Cerebrospinal fluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehrlich P. Das Sauerstoffbedürfenis des Organismus; eine farbenanalytische Studie. Berlin: Hirschwald, 1885.Google Scholar
  2. 2.
    Goldmann EE. Die aussere und innere Sekretion des gesunden und kranken Organismus im Lichte der vitalen Farbung. Beitr Klin Chirurg 1909;64:192–265.Google Scholar
  3. 3.
    Goldmann EE. Vitalfarbung am Zentral-Nerven-system. Abh Preuss Akad Wiss, Phys-Math KL I. 1913:1–60.Google Scholar
  4. 4.
    Spatz H. Die Bedeutung der vitalen Farbung für die Lehre vom Stofaustausch zwischen dem Zentralner-vensystem und dem übrigen Körper. Arch Psychiatr Nervenkr 1933;101:267–358.CrossRefGoogle Scholar
  5. 5.
    Walter FK. Die allgemeinen Grundlagen des Stoffaustausches zwischen dem Zentralnervensystem und dem übrigen Körper. Arch Psychiatr Nervenkr 1930;101:195–230.CrossRefGoogle Scholar
  6. 6.
    Krogh A. The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally. Proc R Soc Lond [Biol] 1946;133:140–200.Google Scholar
  7. 7.
    Dempsey EW, Wislocki GB. An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain. J Biophys Biochem Cytol 1955;1:245–56.PubMedGoogle Scholar
  8. 8.
    Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes. Am J Physiol 1951;183:221–34.Google Scholar
  9. 9.
    Crone C. The permeability of brain capillaries to non-electrolytes. Acta Physiol Scand 1965;64:407–17.PubMedGoogle Scholar
  10. 10.
    Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967;34:207–17.CrossRefPubMedGoogle Scholar
  11. 11.
    Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969;40:648–77.CrossRefPubMedGoogle Scholar
  12. 12.
    Reed DJ. Drug transport into the central nervous system. In: Glaser GH, Pentry JK, Woodbury DM, eds. Antiepileptic drugs: mechanisms of action. New York: Raven Press, 1980:199–205.Google Scholar
  13. 13.
    Lee JC. Evolution in the concept of the blood-brain barrier phenomenon. In: Zimmermann HM, ed. Progress in neuropathology, vol I. New York: Grune and Stratton, 1971:84–145.Google Scholar
  14. 14.
    Cervos-Navarro J. Electronmikroskopischen Befund an den Capillaren der Hirnrinde. Arch Psychiat Nervenkr 1963;204:484–504.Google Scholar
  15. 15.
    Goodenough DA, Revel JP. A fine ultrastructural analysis of the intercellular junctions in mouse liver. J Cell Biol 1970;45:272–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Claude P, Goodenough DA. Fracture faces of zonae occludentes from tight and leaky epithelia. J Cell Biol 1973;58:390–400.CrossRefPubMedGoogle Scholar
  17. 17.
    Madara JL. Tight junction dynamics: is paracellular transport regulated? Cell 1988;53:497–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-I: a high molecular weight polypeptide associated with the tight junction in a variety of epithelia. J Cell Biol 1986;103:755–66.CrossRefPubMedGoogle Scholar
  19. 19.
    Fenstermacher JD, Rapoport SI. Blood-brain barrier. In: Renkin EM, Michel CC, eds. Handbook of physiology. Section 2. Microcirculation, IV. Bethesda: American Physiology Society, 1984:969–1000.Google Scholar
  20. 20.
    Crone C. Lack of sensitivity to small ions in paracellular pathways in cerebral and muscle capillaries of the frog. J Physiol 1984;353:317–37.PubMedGoogle Scholar
  21. 21.
    Renkin EM. Transport of proteins by diffusion, bulk flow and vesicular mechanisms. Physiologist 1980;23:57–61.PubMedGoogle Scholar
  22. 22.
    Van Bree JBMM, De Boer AG, Danhof M, Ginsel LA, Breimer DD. Characterization ofin vitro blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J Pharmacol Exp Ther 1988;247:1233–9.PubMedGoogle Scholar
  23. 23.
    Birnboim AS, Cooper JA, Delvecchio PJ, Lum H, Malik AB. Selectivity of the endothelial monolayer: effects of increased permeability. Microvasc Res 1988;36:216–27.CrossRefPubMedGoogle Scholar
  24. 24.
    Yoshida Y, Ikuta F, Watabe K, Nagata T. Developmental microvascular architecture of the rat cerebellar cortex. Anat Embryol (Berl) 1985;171:129–38.CrossRefGoogle Scholar
  25. 25.
    Levine RL, Fredericks WR, Rapoport SI. Entry of bilirubin into the brain due to opening of the blood-brain barrier. Pediatrics 1982;69:255–9.PubMedGoogle Scholar
  26. 26.
    Mollgard K, Saunders NR. The development of the human blood-brain and blood-cerebrospinal fluid barriers. Neuropathol Appl Neurobiol 1986;12:337–58.PubMedGoogle Scholar
  27. 27.
    Roncali L, Nico B, Ribatti D, Bertossi M, Mancini L. Microscopical and ultrastructural investigations on the development of the blood-brain barrier in the chick embryo optical tectum. Act Neuropathol (Berl) 1986;70:193–201.CrossRefGoogle Scholar
  28. 28.
    Lossinsky AS, Vorbrodt AW, Wisniewski HM. Characterization of endothelial cell transport in the developing mouse blood-brain barrier. Dev Neurosci 1986;8:61–75.PubMedGoogle Scholar
  29. 29.
    Cornford EM, Braun LD, Oldendorf WH, Hill MA. Comparison of lipid-mediated blood-brain barrier penetrability in neonates and adults. Am J Physiol 1982;243:C161-C8.PubMedGoogle Scholar
  30. 30.
    Joó F. Current aspects of the development of the blood-brain barrier. Int J Dev Neurosci 1987;5:369–72.CrossRefPubMedGoogle Scholar
  31. 31.
    DeBault LE, Cancilla PA. Gamma-glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cellsin vitro. Science 1980;207:653–5.PubMedGoogle Scholar
  32. 32.
    Beck DW, Vinters HV, Hart MN, Cancilla PA. Glial cells influence polarity of the blood-brain barrier. J Neuropathol Exp Neurol 1984;43:219–24.PubMedGoogle Scholar
  33. 33.
    Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987;325:253–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Arthur FE, Shivers RR, Bowman PD. Astrocytemediated induction of tight junctions in brain capillary endothelium: an efficientin vitro model. Dev Brain Res 1987;36:155–9.CrossRefGoogle Scholar
  35. 35.
    Tao Cheng JH, Brightman MW. Development of membrane interactions between brain endothelial cells and astrocytesin vitro. Int J Dev Neurosci 1988;6:25–37.CrossRefPubMedGoogle Scholar
  36. 36.
    Bradbury M. The concept of a blood-brain barrier. London: John Wiley & Sons, 1979:22.Google Scholar
  37. 37.
    Pollay M, Curl F. Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 1967;213:1031–8.PubMedGoogle Scholar
  38. 38.
    Gross PM, Weindl A. Peering through the windows of the brain. J Cereb Blood Flow Metab 1987;7:663–72.PubMedGoogle Scholar
  39. 39.
    Fenstermacher JD, Patlak CS. The exchange of materials between cerebrospinal fluid and brain. In: Cserr HF, Fenstermacher JD, Fencl V, eds. Fluid environment of the brain. New York: Academic Press, 1975.Google Scholar
  40. 40.
    Karol MD, Veng-Pedersen P, Brashear RE, DeAtley RE. Effect of alterations of cerebrospinal fluid bulk flow on nicotine cerebrospinal fluid exit transfer kinetics. J Pharm Sci 1988;77:571–8.PubMedGoogle Scholar
  41. 41.
    Fenstermacher JD, Patlak CS, Blasberg RG. Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc 1974;33:2070–4.PubMedGoogle Scholar
  42. 42.
    Campbell KB, Ringo JA, Alexander JE. Informational analysis of left-ventricle/systemic-arterial interaction. Ann Biomed Eng 1984;12:209–31.PubMedGoogle Scholar
  43. 43.
    Levin VA, Landahl HD. Pharmacokinetic approaches to drug distribution in the cerebrospinal fluid based on ventricular administration in beagle dogs. J Pharmacokin Biopharm 1985;13:387–403.CrossRefGoogle Scholar
  44. 44.
    Aird RB. A study of intrathecal cerebrospinal fluid exchange. Exp Neurol 1984;86:342–58.CrossRefPubMedGoogle Scholar
  45. 45.
    Bates IP. Permeability of the blood-brain barrier. TiPS 1985;6:447–50.Google Scholar
  46. 46.
    Pardridge WM. Blood-brain barrier transport of nutrients. Fed Proc 1986;45:2047–9.PubMedGoogle Scholar
  47. 47.
    Pardridge WM. Transport of nutrients and hormones through the blood-brain barrier. Fed Proc 1984;43:201–4.PubMedGoogle Scholar
  48. 48.
    Crone C. Facilitated transfer of glucose to brain tissue. J Physiol (Lond) 1965;181:103–13.Google Scholar
  49. 49.
    Pardridge WM. Carrier mediated transport of thyroid hormones through the blood-brain barrier. Primary role of albumin bound hormone. Endocrinology 1979;105:605–12.PubMedGoogle Scholar
  50. 50.
    Dembri A. Caracteristiques du transport des analogues structuraux des hormones thyroidiennes a travers la barrière hémato-encéphalique. C R Soc Biol (Paris) 1981;181:249–57.Google Scholar
  51. 51.
    Spector R. Myo-inositol transport through the blood-brain barrier. Neurochem Res 1988;13:785–7.CrossRefPubMedGoogle Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1992

Authors and Affiliations

  • J. B. M. M. Van Bree
    • 1
  • A. G. de Boer
    • 1
  • M. Danhof
    • 1
  • D. D. Breimer
    • 1
  1. 1.Center for Bio-Pharmaceutical Sciences, Division of PharmacologyUniversity of Leiden, Sylvius LaboratoriesRA LeidenThe Netherlands

Personalised recommendations