Netherlands Journal of Plant Pathology

, Volume 74, Supplement 1, pp 67–80 | Cite as

The enzymatic maceration of plant tissue

  • D. F. Bateman


A new technique was developed for measuring the enzymatic maceration of plant tissue. When potato tissue disks were subjected to constant agitation in the presence of a “macerating enzyme” they were reduced to a suspension of single cells. the maceration process was followed by determining the increase in turbidity of reaction mixtures at 475 mμ due to the release of free cells. The process of tissue maceration as measured by this turbidimetric procedure was observed to consist of a lag phase followed by a linear phase of cell release; the length of the lag phase and the slope of the linear phase of cell release were both related to the log of the “macerating enzyme” concentration. The “macerating enzyme” ofSclerotium rolfsii was purified and identified as an endo-polygalacturonase.


Een nieuwe methode werd ontwikkeld om de enzymatische maceratie van planteweefsel te meten. Schijfjes aardappel werden in een oplossing van een macererend enzym in voortdurende beweging gehouden, waardoor een suspensie van afzonderlijke cellen ontstond. Het verloop van de maceratie werd vervolgd door de toename der troebeling bij 475 mμ. Het maceratieproces, gemeten volgens deze turbidimetrische methode, bleek eerst een “lag phase” te vertonen, daarna verliep het lineair met de tijd. De lengte van de “lag phase” en de hellingshoek van de lineaire fase hielden beide verband met de concentratie van het macererende enzym.

Het macererende enzym vanSclerotium rolfsii is gezuiverd en geïdentificeerd als een endo-polygalacturonase.


Enzyme Plant Pathology Turbidity Single Cell Plant Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, P., 1964. Estimation of molecular weights of proteins by Sephadex gel filtration. Biochem J. 91: 222–233.PubMedGoogle Scholar
  2. Bary, A. de, 1886. Über einige Sclerotinien und Sclerotinienkrankheiten. Bot. Ztg. 44: 377–474.Google Scholar
  3. Bateman, D. F., 1963. The “macerating enzyme” of Rhizoctonia solani. Phytopathology 53: 1178–1186.Google Scholar
  4. Bateman, D. F., 1964. An induced mechanism of tissue resistance to polygalacturonase in Rhizoctonia-infected hypocotyls of beans. Phytopathology 54: 438–445.Google Scholar
  5. Bateman, D. F., 1966. Hydrolytic andtrans-eliminative degradation of pectic substances by extracellular enzymes of Fusarium solani f. phaseoli. Phytopathology 56: 238–244.PubMedGoogle Scholar
  6. Bateman, D. F. and Beer, S. V., 1965. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55: 204–211.PubMedGoogle Scholar
  7. Bateman, D. F. and Millar, R. L., 1966. Pectic enzymes in tissue degradation. A. Rev. Phytopath. 4: 119–146.CrossRefGoogle Scholar
  8. Brown, W., 1915. Studies in the physiology of parasitism. I. The action of Botrytis cinerea. Ann. Bot. 29: 313–348.Google Scholar
  9. Byrde, R. J. W. and Fielding, A. H., 1962. Resolution of endo-polygalacturonase and a macerating factor in a fungal culture filtrate. Nature, Lond. 196: 1227–1228.Google Scholar
  10. Byrde, R. J. W. and Fielding, A. H., 1965. An extracellular α-L-arabinofuranosidase secreted by Sclerotinia fructigena. Nature, Lond. 205: 390–391.Google Scholar
  11. Davison, F. R. and Willaman, J. J., 1927. Biochemistry of plant diseases. IX. Pectic enzymes. Bot. Gaz. 83: 329–361.CrossRefGoogle Scholar
  12. Dean, M. and Wood, R. K. S., 1967. Cell wall degradation by a pectictrans-eliminase. Nature, Lond. 214: 408–410.Google Scholar
  13. Dehority, B. A., Johnson, R. R. and Conrad, H. R., 1962. Digestibility of forage hemicellulose and pectin by rumen bacteria in vitro and the effect of lignification thereon. J. Dairy Sci. 45: 508–512.Google Scholar
  14. Demain, A. L. and Phaff, H. J., 1957. Recent advances in the enzymatic hydrolysis of pectic substances. Wallerstein Lab. Commun. 20: 119–140.Google Scholar
  15. Ginzburg, B. Z., 1961. Evidence for a protein gel structure cross-linked by metal ions in the intracellular cement of plant tissue. J. exp. Bot. 12: 85–107.Google Scholar
  16. Jones, L. R., 1909. The bacterial soft rots of certain vegetables. II. Pectinase, the cytolytic enzyme produced by Bacillus carotovorus and certain other soft rot organisms. Tech. Bull. Vt. agric. Exp. Stn 147: 281–360.Google Scholar
  17. Joslyn, M. A., 1962. The chemistry of protopectin: a critical review of historical data and recent developments. Adv. Fd Res. 11: 1–107.Google Scholar
  18. Kaji, A., 1958. Studies on macerating enzyme acting on middle lamella pectin. III. Separation of macerating enzyme by duolite CS101. Tech. Bull. Fac. Agric. Kagawa Univ. 9: 141–145.Google Scholar
  19. Kuč, J., 1962. Production of extracellular enzymes by Cladosporium cucumerinum. Phytopathology 52: 961–963.Google Scholar
  20. Lowry, O., Nira, H., Rosebrough, J., Farr, A. L. and Randell, R. J., 1951. Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275.PubMedGoogle Scholar
  21. McClendon, J. H., 1964. Evidence for the pectic nature of the middle lamella of potato tuber cell walls based on the chromatography of macerating enzymes. Am. J. Bot. 51: 628–633.Google Scholar
  22. McClendon, J. H. and Somers, G. F., 1960. The enzymatic maceration of plant tissues. Observations on a new method of measurement. Am. J. Bot. 47: 1–7.Google Scholar
  23. Miller, G. L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyt. Chem. 31: 426–428.CrossRefGoogle Scholar
  24. Naef-Roth, S., Gäumann, E. und Albersheim, P., 1961. Zur Bildung eines mazerierenden Fermentes durch Dothidea ribesa Fr. Phytopath. Z. 40: 283–302.Google Scholar
  25. Nelson, N., 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. biol. Chem. 153: 375–380.Google Scholar
  26. Sherwood, R. T., 1966. Pectin lyase and polygalacturonase production by Rhizoctonia solani and other fungi. Phytopathology. 56: 279–286.Google Scholar
  27. Smith. I., 1960, Chromatographic and electrophoretic techniques. 2nd Ed. Vol. 1. Interscience, New York, 617 pp.Google Scholar
  28. Spalding, D. H., 1963. Production of pectinolytic and cellulolytic enzymes by Rhizopus stolonifer. Phytopathology 53: 929–931.Google Scholar
  29. Starr, M. P. and Moran, F., 1962. Eliminative split of pectic substances by phytopathogenic soft-rot bacteria. Science, N.Y. 135: 920–921.Google Scholar
  30. Tagawa, K. and Kaji, A., 1966. Studies on pectic enzymes. XXI. Assay methods of enzymatic activity causing plant tissue maceration. Tech. Bull. Fac. Agric. Kagawa Univ. 17: 104–109.Google Scholar
  31. Weissbach, A. and Hurwitz, J., 1959. The formation of 2-keto-3-deoxy-heptonic acid in extracts of Escherichia coli. J. biol. Chem. 234: 705–709.PubMedGoogle Scholar
  32. Wolfrom, M. L., Patin, D. L. and DeLederkremer, R. M., 1965. Thin layer chromatography on micro-crystalline cellulose. J. Chromat. 17: 488–494.CrossRefGoogle Scholar
  33. Zaitlin, M. and Coltrin, D., 1964. Use of pectic enzymes in a study of the nature of the intercellular cement of tobacco leaf cells. Pl. Physiol., Lancaster 39: 91–95.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 1968

Authors and Affiliations

  • D. F. Bateman
    • 1
  1. 1.Department of Plant PathologyCornell UniversityIthacaU.S.A.

Personalised recommendations