Transgenic Research

, Volume 2, Issue 4, pp 208–218 | Cite as

NewAgrobacterium helper plasmids for gene transfer to plants

  • Elizabeth E. Hood
  • Stanton B. Gelvin
  • Leo S. Melchers
  • Andre Hoekema


We describe the construction of new helper Ti plasmids forAgrobacterium-mediated plant transformation. These plasmids are derived from three differentAgrobacterium tumefaciens Ti plasmids, the octopine plasmid pTiB6, the nopaline plasmid pTiC58, and the L,L-succinamopine plasmid pTiBo542. The T-DNA regions of these plasmids were deleted using site-directed mutagenesis to yield replicons carrying thevir genes that will complement binary vectorsin trans. Data are included that demonstrate strain utility. The advantages ofAgrobacterium strains harbouring these ‘disamed’ Ti plasmids for plant transformation viaAgrobacterium are discussed.


Agrobacterium plant transformation helper plasmids host range Ti plasmid T-DNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araki, T., Hirano, H., Naito, S. and Komeda, Y. (1989) Introduction of foreign genes intoPharbitis nil calli using a vector derived fromAgrobacterium pTi.Pl. Cell Rep. 8, 259–62.Google Scholar
  2. Atkinson, R.G. and Gardner, R.C. (1991)Agrobacterium-mediated transformation of pepino and regeneration of transgenic plants.Pl. Cell Rep. 10, 208–12.Google Scholar
  3. Baribault, T.J., Skene, K.G.M. and Steele-Scott, N. (1989) Genetic transformation of grapevine cells.Pl. Cell Rep. 8, 137–40.CrossRefGoogle Scholar
  4. Bhatt, D., Parrott, W.A., Collins, G.B. and Hildebrand, D.R. (1991)Agrobacterium induced gall formation in lipoxygenase mutant isolines of soybeans.Pl. Cell Rep. 9, 651–4.Google Scholar
  5. Birnboim, H. and Doly, C.J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA.Nuc. Acids Res. 6, 1513–23.Google Scholar
  6. Chabaud, M., Passiator, J.E., Cannon, F. and Buchanan-Wollaston, V. (1988) Parameters affecting the frequency of kanamycin resistant alfalfa obtained byAgrobacterium tumefaciens mediated transformation.Pl. Cell Rep. 7, 512–6.CrossRefGoogle Scholar
  7. Charest, P.J., Iyer, V.N. and Miki, B.L. (1989) Virulence ofAgrobacterium tumefaciens strains withBrassica napus andBrassica juncea.Pl. Cell Rep. 8, 303–6.Google Scholar
  8. Chee, P.P. (1990) Transformation ofCucumis sativus tissue byAgrobacterium tumefaciens and the regeneration of transformed plants.Pl. Cell Rep. 9, 245–8.Google Scholar
  9. Chilton, M.-D., Currier, T.C., Farrand, S.K., Bendich, A.J., Gordon, M.P. and Nester, E.W. (1974)Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors.Proc. Natl Acad. Sci. USA 71, 3672–6.PubMedGoogle Scholar
  10. De Block, M., De Brouwer, D. and Tenning, P. (1989) Transformation ofBrassica napus andBrassica oleracea usingAgrobacterium tumefaciens and the expression of thebar andneo genes in the transgenic plants.Pl. Physiol. 91, 694–701.Google Scholar
  11. Delzer, B.W., Somers, D.A. and Orf, J.H. (1990)Agrobacterium tumefaciens susceptibility and plant regeneration of 10 soybean genotypes in maturity groups 00 to II.Crop Sci. 30, 320–2.Google Scholar
  12. Ditta, G., Stanfield, S., Corbin, D. and Helinski, D.R. (1980) Broad host range DNA cloning system for Gram-negative bacteria-construction of a gene bank ofRhizobium meliloti.Proc. Natl Acad. Sci. USA 77, 7347–51.PubMedGoogle Scholar
  13. Ellis, D., Roberts, D., Sutton, B., Lazaroff, W., Webb, D. and Finn, B. (1989) Transformation of white spruce and other conifer species byAgrobacterium tumefaciens.Pl. Cell Rep. 8, 16–20.CrossRefGoogle Scholar
  14. Fang, G. and Grumet, R. (1990)Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants.Pl. Cell Rep. 9, 160–4.Google Scholar
  15. Farrand, S.D., Slota, J.E., Shim, J.-S. and Kerr, A. (1985) Tn5 insertions in the agrocin 84 plasmid: the conjugal nature of pAg84 and the locations of determinants of transfer and agrocin 84 production.Plasmid 13, 106–17.CrossRefPubMedGoogle Scholar
  16. Filipponee, E. and Lurquin, P.F. (1989) Stable transformation of eggplant (Solanum melongena L.) by cocultivation of tissues withAgrobacterium tumefaciens carrying a binary plasmid vector.Pl. Cell Rep. 8, 370–3.CrossRefGoogle Scholar
  17. Fillatti, J.J., Kiser, J., Rose, R. and Comai, L. (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binaryAgrobacterium tumefaciens vector.Bio/Technology 5, 726–30.CrossRefGoogle Scholar
  18. Firoozabady, E., DeBoer, D.L., Merlo, D.J., Halk, E.L., Amerson, L.N., Rashka, K.E. and Murray, E.E. (1987) Transformation of cottonGossypium hirsutum L. byAgrobacterium tumefaciens and regeneration of transgenic plants.Pl. Mol. Biol. 10, 105–16.CrossRefGoogle Scholar
  19. Gelvin, S.B. (1990) Crown gall disease and hairy root disease, a sledgehammer and a tackhammer.Pl. Physiol. 92, 281–5.Google Scholar
  20. Godwin, I., Todd, G., Ford-Lloyd, B. and Newbury, H.J. (1991) The effects of acetosyringone and pH onAgrobacterium-mediated transformation vary according to plant species.Pl. Cell Rep. 9, 671–5.Google Scholar
  21. Hirsch, P. and Beringer, J.E. (1984) A physical map of pPH1JI and pJB4JI.Plasmid 12, 139–41.CrossRefPubMedGoogle Scholar
  22. Hobbs, S.L.A., Jackson, J.A. and Mahon, J.D. (1989) Specificity of strain and genotype in the susceptibility of pea toAgrobacterium tumefaciens.Pl. Cell Rep. 8, 274–7.Google Scholar
  23. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. (1983) A binary plant vector strategy based on separation ofvir- and T-region of theAgrobacterium tumefaciens Ti-plasmid.Nature 303, 179–80.CrossRefGoogle Scholar
  24. Hoekema, A., Huisman, M.J., Molendyk, L., vandenElzen, P.J.M. and Cornelissen, B.J.C. (1989) The genetic engineering of two commercial potato cultivars for resistance of potato virus X.Biol/Technology 7, 273–8.CrossRefGoogle Scholar
  25. Hood, E.E., Helmer, G.L., Fraley, R.T. and Chilton, M.-D. (1986a) The hypervirulence ofAgrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA.J. Bacteriol. 168, 1291–1301.PubMedGoogle Scholar
  26. Hood, E.E., Chilton, W.S., Chilton, M.-D. and Fraley, R.T. (1986b) T-DNA and opine synthetic loci in tumors incited byAgrobacterium tumefaciens A281 on soybean and alfalfa plants.J. Bacteriol. 168, 1283–90.PubMedGoogle Scholar
  27. Hood, E.E., Fraley, R.T. and Chilton, M.-D. (1987) Virulence ofAgrobacterium tumefaciens strain A281 on legumes.Pl. Physiol. 83, 529–34.Google Scholar
  28. Hood, E.E., Clapham, D.H., Ekberg, I. and Johannson, T. (1990) T-DNA presence and opine production in tumors ofPicea abies (L.) Karst induced byAgrobacterium tumefaciens A281.Pl. Mol. Biol. 14, 111–7.CrossRefGoogle Scholar
  29. Hooykaas, P.J.J., den Dulk-Ras, H. and Schilperoort, R.A. (1980) Molecular mechanism of Ti plasmid mobilization by R plasmids: Isolation of Ti plasmids with transposon-insertions inAgrobacterium tumefaciens.Plasmid 4, 64–75.CrossRefPubMedGoogle Scholar
  30. Hooykaas, P.J.J., Hofker, M., den Dulk-Ras, H. and Schilperoort, R.A. (1984) A comparison of virulence determinants in an octopine Ti plasmid, a nopaline Ti plasmid, and an Ri plasmid inAgrobacterium tumefaciens.Plasmid 1, 195–211.CrossRefGoogle Scholar
  31. Hooykaas, P.J.J. and Schilperoort, R.A. (1992)Agrobacterium and plant genetic engineering.Pl. Mol. Biol. 13, 327–36.CrossRefGoogle Scholar
  32. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. (1985) A simple and general method for transferring genes into plants.Science 227, 1229–31.Google Scholar
  33. James, D.J., Passey, A.J., Barbara, D.J. and Bevan, M. (1989) Genetic transformation of appleMalus pumila Mill. using a disarmed Ti-binary vector.Pl. Cell Rep. 7, 658–61.Google Scholar
  34. Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system.Pl. Mol. Biol. Rep. 5, 387–405.Google Scholar
  35. Jia, S.-R., Yang, M.-Z., Ott, R. and Chua, N.-H. (1989) High frequency transformation ofKalanchoe laciniata.Pl. Cell Rep. 8, 336–40.CrossRefGoogle Scholar
  36. Kallerhoff, J., Perez, P., Bouzoubaa, S., Tahar, S.B. and Perret, J. (1990) Beet necrotic yellow vein virus coat protein-mediated protection in sugarbeet (Beta vulgaris L.) protoplasts.Pl. Cell Rep. 9, 224–8.Google Scholar
  37. Klee, H.J. and Rogers, S.G. (1989) Plant gene vectors and transformation: plant transformation systems based on the use ofAgrobacterium tumefaciens. In Schell, J. and Vasil, I.K. eds.,Cell Culture and Somatic Cell Genetics. Vol. 6. Molecular Biology of Plant Nuclear Genes, pp. 2–25. San Diego: Academic Press.Google Scholar
  38. Koekman, B.P., Hooykaas, P.J.J. and Schilperoort, R.A. (1982) A functional map of the replicator region of the octopine Ti plasmid.Plasmid 7, 119–32.CrossRefPubMedGoogle Scholar
  39. Komari, T. (1990) Transformation of cultured cells ofChenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542.Pl. Cell Rep. 9, 303–6.Google Scholar
  40. Ledger, S.E., Deroles, S.C. and Given, N.K. (1991) Regeneration andAgrobacterium-mediated transformation of chrysanthemum.Pl. Cell Rep. 10, 195–9.Google Scholar
  41. Li, X.-Q., Liu, C.-N., Ritchie, S.W., Peng, J.-Y., Gelvin, S.B. and Hodges, T.K. (1992) Factors influencingAgrobacterium-mediated transient expression ofgusA in rice.Pl. Mol. Biol. 20, 1037–48.CrossRefGoogle Scholar
  42. Liu, C.-N., Li, X.-Q. and Gelvin, S.B. (1992) Multiple copies ofvirG enhance the transient transformation of celery, carrot, and rice tissues byAgrobacterium tumefaciens.Pl. Mol. Biol. 1071–87.Google Scholar
  43. Liu, W., Parrott, W.A., Hildebrand, D.F., Collins, G.B. and Williams, E.G. (1990)Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes.Pl. Cell Rep. 9, 360–4.Google Scholar
  44. Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular cloning:a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  45. McGranahan, G.H., Charles, A.L., Uratsu, S.L. and Dandekar, A.M. (1990) Improved efficiency of the walnut somatic embryo gene transfer system.Pl. Cell Rep. 8, 512–6.CrossRefGoogle Scholar
  46. Michelmore, R., Marsh, E., Seely, S. and Landry, B. (1987) Transformation of lettuceLactuca sativa mediated byAgrobacterium tumefaciens.Pl. Cell Rep. 6, 439–42.Google Scholar
  47. Moloney, M.M., Walker, J.M. and Sharma, K.K. (1989) High efficiency transformation ofBrassica napus usingAgrobacterium vectors.Pl. Cell Rep. 8, 238–42.CrossRefGoogle Scholar
  48. Morris, J.W., Castle, L.A. and Morris, R.O. (1989) Efficacy of differentAgrobacterium tumefaciens strains in transformation of pinaceous gymnosperms.Physiol. Mol. Pl. Pathol. 34, 451–61.CrossRefGoogle Scholar
  49. Mullins, M.G., Tang, F.C.A. and Facciotti, D. (1990)Agrobacterium-mediated genetic transformation of grapevines: transgenic plants ofVitis rupestris Scheele and buds ofVitis vinifera L.Bio/Technology 8, 1041–45.CrossRefGoogle Scholar
  50. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures.Physiol. Pl. 15, 473–97.Google Scholar
  51. Nehra, N.S., Chibbar, R.N., Kartha, K.K., Datla, R.S.S., Crosby, W.L. and Stushnoff, C. (1990)Agrobacterium-mediated transformation of strawberry calli and recovery of transgenic plants.Pl. Cell Rep. 9, 10–3.Google Scholar
  52. Owens, L.D. and Smigocki, A.C. (1988) Transformation of soybean cells using mixed strains ofAgrobacterium tumefaciens and phenolic compounds.Pl. Physiol. 88, 570–3.Google Scholar
  53. Parrott, W.A., Hoffmann, L.M., Hildebrand, D.R., Williams, E.G. and Collins, G.B. (1989) Recovery of primary transformants of soybean.Pl. Cell Rep. 7, 615–7.Google Scholar
  54. Puonti-Kaerlas, J., Stabel, P. and Eriksson, T. (1989) Transformation of pea (Pisum satibum L.) byAgrobacterium tumefaciens.Pl. Cell Rep. 8, 321–4.CrossRefGoogle Scholar
  55. Potrykus, I. (1990) Gene transfer to cereals: an assessment.Bio/Technology 8, 535–42.CrossRefGoogle Scholar
  56. Pythoud, F., Sinkar, V.P., Nester, E.W. and Gordon, M.P. (1987) Increased virulence ofAgrobacterium rhizogenes conferred by thevir region of pTiBo542: application to genetic engineering of poplar.Bio/Technology 5, 1323–7.CrossRefGoogle Scholar
  57. Raineri, D.M., Bottino, P., Gordon, M.P. and Nester, E.W. (1990)Agrobacterium-mediated transformation of rice (Oryza sativa L.).Bio/Technology 8, 33–8.CrossRefGoogle Scholar
  58. Rotino, G.L. and Gleddie, S. (1990) Transformation of eggplant,Solanum melongena L. using a binaryAgrobacterium tumefaciens vector.Pl. Cell Rep. 9, 26–9.Google Scholar
  59. Sanford, J.C. (1990) Biolistic plant transformation.Physiol. Plant. 79, 206–9.CrossRefGoogle Scholar
  60. Schmidt, R. and Willmitzer, L. (1986) High efficiencyAgrobacterium tumefaciens mediated transformation ofArabidopsis thaliana leaf and cotyledon explants.Pl. Cell Rep. 7, 583–6.CrossRefGoogle Scholar
  61. Schrammeijer, B., Sijmons, P.C., Elzen, P.J.M., van den and Hoekema, A. (1990) Meristem transformation of sunflower viaAgrobacterium.Pl. Cell Rep. 9, 55–60.Google Scholar
  62. Sciaky, D., Montoya, A.L. and Chilton, M.D. (1978) Fingerprints ofAgrobacterium Ti plasmids.Plasmid 1, 238–53.CrossRefPubMedGoogle Scholar
  63. Selvaraj, G., Fong, Y.C. and Iyer, V.N. (1984) A portable DNA sequence carrying the cohesive site (cos) of bacteriophage λ and themob (mobilization) region of the broad-host-range plasmid RK2: a module for the construction of new cosmids.Gene 32, 235–41.CrossRefPubMedGoogle Scholar
  64. Sheerman, S. and Bevan, M.W. (1988) A rapid transformation method forSolanum tuberosum using binaryAgrobacterium tumefaciens vectors.Pl. Cell Rep. 7, 13–6.CrossRefGoogle Scholar
  65. Southern, E. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98, 503–18.PubMedGoogle Scholar
  66. Stomp, A.-M., Loopstra, C., Chilton, W.S., Sederoff, R.R. and Moore, L.W. (1990) Extended host range ofAgrobacterium tumefaciens in the genusPinus.Pl. Physiol. 92, 1226–32.Google Scholar
  67. Swanson, E.B. and Erickson, L.R. (1989) Haploid transformation inBrassica napus using an octopine-producing strain ofAgrobacterim tumefaciens.Theor. Appl. Genet. 78, 831–5.Google Scholar
  68. Umbeck, P., Johnson, G., Barton, K. and Swain, W. (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants.Bio/Technology 3, 263–6.CrossRefGoogle Scholar
  69. Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L. and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events inAgrobacterium-mediated plant transformation.Mol. Gen. Genet. 220, 245–50.CrossRefPubMedGoogle Scholar
  70. van Wordragen, M.F., de Jong, J., Huitema, H.B.M. and Dons, H.J.M. (1991) Genetic transformation of chyrsanthemum using wild typeAgrobacterum strains; strain and cultivar specificity.Pl. Cell Rep. 9, 505–8.Google Scholar
  71. van Wordragen, M.F. and Dons, H.J.M. (1992)Agrobacterium tumefaciens-mediated transformation of recalcitrant crops.Pl. Mol. Biol. Rep. 10, 12–36.Google Scholar
  72. Vieira, J. and Messing, J.W. (1987) Production of a single-stranded plasmid DNA.Meth. Enzymol 153, 3–11.PubMedGoogle Scholar
  73. Zhou, J.H. and Atherly, A.G. (1990)In situ detection of transposition of the maize controlling element (AC) in transgenic soybean tissues.Pl. Cell Rep. 8, 542–5.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Elizabeth E. Hood
    • 1
  • Stanton B. Gelvin
    • 2
  • Leo S. Melchers
    • 3
  • Andre Hoekema
    • 3
  1. 1.Department of BiologyUtah State UniversityLoganUSA
  2. 2.Department of Biological SciencesPurdue UniversityWest LafayetteUSA
  3. 3.MOGEN InternationalLeidenNetherlands

Personalised recommendations