, Volume 42, Issue 1, pp 13–19 | Cite as

Sensitivity variations in insect chemoreceptors; A review

  • W. M. Blaney
  • L. M. Schoonhoven
  • M. S. J. Simmonds

Key words

Insects chemoreceptor receptor sensitivity feeding behavior central regulating mechanisms peripheral regulating mechanisms sensory behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.
    Alkon, D.L., Calcium-mediated reduction of ionic currents: a biophysical memory trace. Science226 (1984) 1037–1045.PubMedGoogle Scholar
  2. 6.
    Angioy, A.M., Liscia, A., Crnjar, R., and Pietra, P., An endocrine control mechanism for chemosensillar activity in the blowfly. Experientia39 (1983) 545–546.Google Scholar
  3. 7.
    Angioy, A.M., Liscia, A., and Pietra, P., Cyclic sensitivity variations in the labellar chemosensilla ofCalliphora. Experientia39 (1983) 546–547.Google Scholar
  4. 8.
    Bernays, E. A., and Chapman, R.F., The control of changes in the peripheral sensilla associated with feeding inLocusta migratoria (L.) J. exp. Biol.57 (1972) 755–763.Google Scholar
  5. 9.
    Bernays, E.A., Blaney, W.M., and Chapman, R.F., Changes in chemoreceptor sensilla on the maxillary palps ofLocusta migratoria in relation to feeding. J. exp. Biol.57 (1972) 745–753.Google Scholar
  6. 10.
    Blaney, W.M., Chemoreception and food selection in locusts. TINS (1981) 35–38.Google Scholar
  7. 11.
    Blaney, W.M., Chapman, R.F., and Cook, A.G., The structure of the terminal sensilla on the maxillary palps ofLocusta migratoria (L.), and changes associated with moulting. Z. Zellforsch.121 (1971) 48–68.CrossRefPubMedGoogle Scholar
  8. 12.
    Blaney, W.M., and Simmonds, M.S.J., Electrophysiological activity in insects in response to antifeedants. TDRI Misc. Pub. Lond. (1983) 219.Google Scholar
  9. 13.
    Blaney, W.M., and Simmonds, M.S.J., Experience of chemicals alters the taste sensitivity of lepidopterous larvae. Chem. Senses8 (1984) 245.Google Scholar
  10. 14.
    Blaney, W.M., and Winstanley, C., Chemosensory mechanisms of locusts in relation to feeding: the role of some secondary plant compounds. In: Insect Neurobiology and Pesticide Action. Neurotoxicology79 (1980) 383–389.Google Scholar
  11. 15.
    Blom, F., Sensory activity and food intake: a study of input-output relationships in two phytophagous insects. Neth. J. Zool.28 (1978) 277–340.Google Scholar
  12. 16.
    Broyles, J.L., Hanson, F.E., and Shapiro, A.M., Ion dependence of the tarsal sugar receptor of the blowflyPhormia regina. J. Insect Physiol.22 (1976) 1587–1600.CrossRefPubMedGoogle Scholar
  13. 17.
    Clark, J.V., Changes in the feeding rate and receptor sensitivity over the last instar of the African armyworm,Spodoptera exempta. Ent. exp. appl.27 (1980) 144–148.CrossRefGoogle Scholar
  14. 18.
    Cook, A.G., The ultrastructure of the A1 sensilla on the posterior surface of the clypeo-labrum ofLocusta migratoria migratorioides (R & F). Z. Zellforsch.134 (1972) 539–554.CrossRefPubMedGoogle Scholar
  15. 19.
    Davis, E.E., Regulation of sensitivity in the peripheral chemoreceptor systems for host-seeking behaviour by a hemolymph-borne factor inAedes aegypti. J. Insect Physiol.30 (1984) 179–183.CrossRefGoogle Scholar
  16. 20.
    Davis, E.E., Development of lactic acid-receptor sensitivity and host-seeking behavior in newly emerged femaleAedes aegypti mosquitoes. J. Insect Physiol.30 (1984) 211–215.CrossRefGoogle Scholar
  17. 21.
    Davis, E.E., and Takahashi, F.T., Humoral alteration of chemoreceptor sensitivity in the mosquito. Olfaction and Taste7 (1980) 139–142.Google Scholar
  18. 22.
    Dethier, V.G., Electrophysiological studies of gustation in lepidoperous larvae. II. Taste spectra in relation to food-plant discrimination. J. comp. Physiol.82 (1973) 103–134.CrossRefGoogle Scholar
  19. 23.
    Dethier, V.G., The hungry fly. Harvard University Press, Cambridge 1976.Google Scholar
  20. 24.
    Dethier, V.G., Food-aversion learning in two polyphagous caterpillars,Diacrisia virginica andEstigmene congrua. Physiol. Ent.5 (1980) 321–325.Google Scholar
  21. 25.
    Dethier, V.G., and Yost, M.T., Oligophagy and absence of food-aversion learning in tobacco hornworms,Manduca sexta. Physiol. Ent.4 (1979) 125–130.Google Scholar
  22. 26.
    Dominick, O. S., and Truman, J.W., The physiology of wandering behavior inManduca sexta. I. Temporal organization and the influence of the internal and external environments. J. exp. Biol.110 (1984) 35–41.PubMedGoogle Scholar
  23. 27.
    Getting, P.A., The sensory control of motor output in fly proboscis extension. Z. vergl. Physiol.74 (1971) 103–120.CrossRefGoogle Scholar
  24. 28.
    Gelperin, A., and Forsythe, D., Neuroethological studies of learning in mollusks, in: Simpler Networks and Behaviour, pp. 239–250. Ed. J.C. Fentress. Sinauer Associates, Sunderland 1975.Google Scholar
  25. 29.
    Hall, M.J.R., Central control of tarsal threshold for proboscis extension in the blowfly. Physiol. Ent.5 (1980) 17–24.Google Scholar
  26. 30.
    Hall, M.J.R., Circadian rhythms of proboscis extension responsiveness in the blowfly; central control of threshold changes. Physiol. Ent.5 (1980) 223–233.Google Scholar
  27. 31.
    Hansen, K., Insect chemoreception. Receptors and Recognition (B)5 (1978) 233–292.Google Scholar
  28. 32.
    Hellekant, G., Influences on the impulse pattern in efferent chorda tympani nerve fibers in the rat. Olfaction and Taste4 (1972) 308–315.Google Scholar
  29. 33.
    Hodgson, E.S., Taste receptors of arthropods. Symp. zool. Soc. London23 (1968) 269–277.Google Scholar
  30. 34.
    Horn, E., Vergleichende Sinnesphysiologie. Gustav-Fischer-Verlag, Stuttgart 1982.Google Scholar
  31. 35.
    Jachmann, H., Zweypfenning, R.C.V.J., and Van der Molen, J.N., Effects of hemolymph free cations on blowfly taste receptor responses. J. Insect Physiol.28 (1982) 943–946.CrossRefGoogle Scholar
  32. 36.
    Kandel, E.R., Krasne, F.B., Strumwasser, F., and Truman, J.W., Cellular mechanisms in the selection and modulation of behaviour. Neurosci. Res. Program Bull.17 (1979) 523–710.Google Scholar
  33. 37.
    Kandel, E.R., and Schwartz, J.H., Molecular biology of learning: modulation of transmitter release. Science218 (1982) 433–443.PubMedGoogle Scholar
  34. 38.
    Kramer, J.J. de, and Molen, L.G. Vander, Development of labellar taste hairs in the blowfly,Calliphora vicina (Insecta, Diptera). Zoomorphology104 (1984) 1–10.CrossRefGoogle Scholar
  35. 39.
    Küppers, J., and Thurm, U., Humorale Steuerung eines Ionentransports an epithelialen Rezeptoren von Insekten. Verh. dt. zool. Ges.67 (1975) 46–50.Google Scholar
  36. 39a.
    Küppers, J., and Thurm, U., On the functional significance of ion circulation induced by electrogenic transport, in: Exogenous and Endogenous Influences on Metabolic and Neural Control, vol. 1, pp. 313–327. Eds A.D.F. Addink and N. Spronk. Pergamon Press, Oxford 1982.Google Scholar
  37. 40.
    Lynch, G., and Baudry, M., The biochemistry of memory: a new and specific hypothesis. Science224 (1984) 1057–1063.PubMedGoogle Scholar
  38. 41.
    Ma, W.C., Dynamics of feeding responses inPieris brassicae linn. as a function of chemosensory input: a behavioral, ultrastructural and electrophysiological study. Mededelingen Landbouwhogeschool Wageningen72 (1972) 1–162.Google Scholar
  39. 42.
    Meola, R.W., cited in Davis, Regulation of sensitivity in the peripheral chemoreceptor systems for host-seeking behaviour by a hemolymph-borne factor inAedes aegypti. J. Insect Physiol.30 (1984) 179–183.CrossRefGoogle Scholar
  40. 43.
    Meola, R.W., and Petralia, R.W., Juvenile hormone induction of biting behaviour inCulex mosquitoes. Science209 (1980) 1548–1550.Google Scholar
  41. 44.
    Meijsser, F.M., Internal report, Department of Animal Physiology, Agricultural University, Wageningen 1983.Google Scholar
  42. 45.
    Moulins, M., and Noirot, C., Morphological features bearing on transduction and peripheral integration in insect gustatory organs. Olfaction and Taste4 (1972) 49–55.Google Scholar
  43. 46.
    Muraleedharan, D., and Prabha, V., Hormonal influence on feeding and digestion in a plant bug,Dysdercus cingulatus and a caterpillarHyblaea puera. Physiol. Ent.6 (1981) 183–189.Google Scholar
  44. 47.
    Omand, E., A peripheral sensory basis for behavioural regulation. Comp. Biochem. Physiol. (A)38 (1971) 265–278.CrossRefGoogle Scholar
  45. 48.
    Omand, E., and Zabara, J., Response reduction in dipteran chemoreceptors after sustained feeding or darkness. Comp. Biochem. Physiol. (A)70 (1981) 469–478.CrossRefGoogle Scholar
  46. 49.
    Palaniswamy, P., Seabrook, W.D., and Sivasubramanian, P., Effect of a juvenile hormone analogue on olfactory sensitivity of eastern spruce budworm,Choristoneura fumiferana (Lepidoptera: Tortricidae). Ent. exp. appl.26 (1979) 175–179.Google Scholar
  47. 50.
    Palaniswamy, P., Sivasubramanian, P., and Seabrook, W.D., Modulation of sex pheromone perception in female moths of the eastern spruce budworm,Choristoneura fumiferana by altosid. J. Insect Physiol.25 (1979) 571–574.CrossRefGoogle Scholar
  48. 51.
    Phillips, C.E., and Vande Berg, J.S., Directional flow of sensillum liquor in blowfly (Phormia regina) labellar chemoreceptors. J. Insect Physiol.22 (1976) 425–429.CrossRefPubMedGoogle Scholar
  49. 52.
    Rachman, N., The sensitivity of the labellar sugar receptors ofPhormia regina in relation to feeding. J. Insect Physiol.25 (1979) 733–739.CrossRefGoogle Scholar
  50. 53.
    Rees, C.J.C., Age dependency of response in an insect chemoreceptor sensillum. Nature227 (1970) 740–742.PubMedGoogle Scholar
  51. 54.
    Roelofs, W.L., and Comeau, A., Sex pheromone perception: electroantennogram responses of the red-banded leaf roller moth. J. Insect Physiol.17 (1971) 1969–1982.CrossRefPubMedGoogle Scholar
  52. 55.
    Ross, R.J., Palaniswamy, P., and Seabrook, W.D., Electroantennograms from male and female spruce budworm (Choristoneura fumiferana (Chem.)) for different ages and pheromone concentrations. Can. Ent.111 (1979) 807–816.Google Scholar
  53. 56.
    Schoonhoven, L.M., Loss of hostplant specificity byManduca sexta after rearing on an artificial diet. Ent. exp. appl.10 (1967) 270–272.CrossRefGoogle Scholar
  54. 57.
    Schoonhoven, L.M., Sensitivity changes in some insect chemoreceptors and their effect on food selection behavior. Proc. koninkl. ned. Akad. Wetensch. (C)72 (1969) 491–498.Google Scholar
  55. 58.
    Schoonhoven, L.M., On the variability of chemosensory information. Symp. Biol. Hung.16 (1976) 261–266.Google Scholar
  56. 59.
    Schoonhoven, L.M., Long-term sensitivity changes in some insect taste receptors. Drug Res.28 (1978).Google Scholar
  57. 60.
    Schoonhoven, L.M., What makes a caterpillar eat? The sensory code underlying feeding behavior, in press 1985.Google Scholar
  58. 61.
    Schoonhoven, L.M., Unpublished results.Google Scholar
  59. 62.
    Schweitzer, E.S., Sanes, J.R., and Hildebrand, J.G., Ontogeny of electroantennogram responses in the moth,Manduca sexta. J. Insect Physiol.22 (1976) 955–960.CrossRefGoogle Scholar
  60. 63.
    Seabrook, W.D., Hirai, K., Shorey, H.H., and Gaston, L.K., Maturation and senescence of an insect chemosensory response. J. chem. Ecol.5 (1979) 587–594.CrossRefGoogle Scholar
  61. 64.
    Sieber, R., and Benz, G., The influence of juvenile hormone on the feeding behavior of last-instar larvae of the codling moth,Laspeyresia pomonella (Lep., Tortricidae). Experientia34 (1978) 1647–1650.Google Scholar
  62. 65.
    Simmonds, M.S.J., and Blaney, W.M., Some effects of azadirachtin on lepidopterous larvae. Proc. 2nd. Int. Neem. Conf. Eds H. Schmutterer and K.R.S. Ascher, GTZ, Eschborn (1984) 163–180.Google Scholar
  63. 66.
    Simpson, S.J., An oscillation underlying feeding and a number of other behaviors in fifth-instarLocusta migratoria nymphs. Physiol. Ent.6 (1918) 315–324.Google Scholar
  64. 67.
    Spencer, M., and Case, J.F., Exogenous ecdysteroids elicit lowthreshold sensory responses in spiny lobsters. J. exp. Zool.229 (1984) 163–166.CrossRefGoogle Scholar
  65. 68.
    Städler, E., and Hanson, F.E., Influence of induction of host preference on chemoreception ofManduca sexta: behavioral and electrophysiological studies. Symp. Biol. Hung.16 (1976) 267–273.Google Scholar
  66. 69.
    Stoffolano, J.G., Effect of age and diapause on the mean impulse frequency and failure to generate impulses in labellar chemoreceptor sensilla ofPhormia regina. J. Geront.28 (1973) 35–39.PubMedGoogle Scholar
  67. 70.
    Stoffolano, J.G., Control of feeding and drinking in diapausing insects, in: Experimental analysis of insect behavior, pp. 32–47. Ed. L. Barton Browne. Springer, New York 1974.Google Scholar
  68. 71.
    Stoffolano, J.G., Damon, R.A., and Desch, C.E., The effect of age, sex and anatomical position on peripheral responses of taste receptors in blowflies, genusPhormia andProtophormia. Exp. Geront.13 (1978) 115–124.CrossRefGoogle Scholar
  69. 72.
    Stürckow, B., Holbert, P.E., and Adams, J.R., Fine structure of the tip of chemosensitive hairs in two blowflies and the stable fly. Experientia23 (1967) 780–782.PubMedGoogle Scholar
  70. 73.
    Stürckow, B., Holbert, P.E., Adams, J.R., and Anstead, R.J., Fine structure of the tip of the labellar taste hair of the blowflies,Phormia regina (Mg.) andCalliphora vicina R.-D. (Diptera: Calliphoridae). Z. Morph. Tiere75 (1973) 87–109.CrossRefGoogle Scholar
  71. 74.
    Wensler, R.J., and Filshie, B.K., Gustatory sense organs in the food canal of aphids. J. Morph.129 (1969) 473–492.CrossRefGoogle Scholar
  72. 75.
    Wolk, F.M. Van der, Koerten, H.K., and Starre, H. Van der, The external morphology of contact chemoreceptive hairs of flies and the motility of the tips of these hairs. J. Morph.180 (1984) 37–54.CrossRefGoogle Scholar
  73. 76.
    Zacharuk, R.Y., Ultrastructure and function of insect chemosensilla. A. Rev. Ent.25 (1980) 27–47.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • W. M. Blaney
    • 1
  • L. M. Schoonhoven
    • 1
  • M. S. J. Simmonds
    • 1
  1. 1.Behavioral Entomology Group, Department of ZoologyBirkbeck CollegeLondon(England)

Personalised recommendations