, Volume 45, Issue 7, pp 622–637 | Cite as

A mutualism at the edge of its range

  • J. L. Bronstein


Comparing populations that differ in access to mutualists can suggest how traits associated with these interactions have evolved. I discuss geographical and seasonal variation in the success of a primarily tropical mutualism (the fig/pollinator interaction), and evaluate some possible adaptations allowing it to persist at the edge of its range. Pollinators probably have difficulty in seasonal sites because 1) fig trees flower rarely in winter and 2) trees that do flower are less detectable and more difficult to reach. Fig biologists believe that seasonality must have selected for adaptations allowing pollinators to survive winter. However, geographical comparisons do not support two current ideas, the synchrony-breakdown hypothesis and the specificity-breakdown hypothesis. I pose two alternatives: plasticity of fruit and wasp developmental time, and adaptations of free-living fig wasps. I also distinguish between the impact of seasonality on monoecious versus dioecious figs; the latter group appear better adapted to reproduce in cool climates. A combination of comparative, observational, and experimental approaches has great potential for advancing our understanding of mutualisms.

Key words

Agaonidae coevolution Ficus fig mutualism phenology pollination seasonality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baijnath, H., and Ramcharun, S., Microscopic observations of the ostiolar bracts in some South African examples of the genusFicus L. (Moraceae). Proc. Electron micr. Soc. S. Afr.11 (1981) 135–136.Google Scholar
  2. 2.
    Baijnath, H., and Ramcharun, S., Aspects of pollination and floral development inFicus capensis Thunb. (Moraceae). Bothalia14 (1983) 883–888.Google Scholar
  3. 3.
    Baijnath, H., and Ramcharun, S., Reproductive biology and chalcid symbiosis inFicus burtt-davyi (Moraceae). Monogr. Syst. bot. Mo. Bot. Gdn25 (1988) 227–235.Google Scholar
  4. 4.
    Baijnath, H., Naicker, S., and Ramcharun, S., The interaction of figs and fig wasps, in: Insects and the Plant Surface, pp. 348–349 Eds B. E. S. Juniper and T. R. E. Southwood. Edward Arnold Ltd, London 1986.Google Scholar
  5. 5.
    Balakrishnan Nair, P., and Abdurahiman, U. C., Population dynamics of the fig waspKradibia gestroi (Grandi) (Hymenoptera Chalcidoidea, Agaonidae) fromFicus exasperata Vahl. Proc. K. ned. Akad. Wet., Ser. C87 (1984) 365–375.Google Scholar
  6. 6.
    Barker, N. P., Evidence of a volatile attractant inFicus ingens (Moraceae). Bothalia15 (1985) 607–611.Google Scholar
  7. 7.
    Bentley, B. L., Plants bearing extrafloral nectaries and the associated ant community: interhabitat differences in the reduction of herbivore damage. Ecology57 (1976) 815–820.Google Scholar
  8. 8.
    Berg, C. C., Floral differentiation and dioecism inFicus (Moraceae), in: Minisymposium, Figs and Fig Insects, pp. 15–25. CNRS, Montpellier, France 1984.Google Scholar
  9. 9.
    Berg, C. C., Classification and distribution ofFicus. Experientia45 (1989) 605–611.Google Scholar
  10. 10.
    Bond, W., and Slingsby, P., Collapse of an ant-plant mutualism: the Argentine ant (Iridomyrmex hunilis) and myrmecochorous Proteaceae. Ecology65 (1984) 1031–1037.Google Scholar
  11. 11.
    Borchert, R., Phenology and control of flowering in tropical trees. Biotropica15 (1982) 81–89.Google Scholar
  12. 12.
    Boucek, Z., Watsham, A., and Wiebes, J. T., The fig wasp fauna of the receptacles ofFicus thonningii (Hymenoptera, Chalcidoidea). Tijdschr. Ent.124 (1981) 149–233.Google Scholar
  13. 13.
    Brantjes, N. B. M., Wind as a factor influencing flower-visiting byHadena bicruris (Noctuidae) andDeilephila elpenor (Sphingidae). Ecol. Ent.6 (1981) 361–363.Google Scholar
  14. 14.
    Briand, F., and Yodzis, P., The phylogenetic distribution of obligate mutualism: evidence of limiting similarity and global instability. Oikos39 (1982) 273–275.Google Scholar
  15. 15.
    Bronstein, J.L., Coevolution and Contraints in a Neotropical Fig-Pollinator Wasp Mutualism. Ph. D. Dissertation. University of Michigan, Ann Arbor 1986.Google Scholar
  16. 16.
    Bronstein, J. L., Maintenance of species-specificity in a Neotropical fig-pollinator wasp mutualism. Oikos48 (1987) 39–46.Google Scholar
  17. 17.
    Bronstein, J. L., Fruit production in a monoecious fig: consequences of an obligate mutualism. Ecology69 (1988) 207–214.Google Scholar
  18. 18.
    Bronstein, J. L., Mutualism, antagonism, and the fig-pollinator interaction. Ecology69 (1988) 1298–1302.Google Scholar
  19. 19.
    Bronstein, J. L., Predators of fig wasps. Biotropica20 (1988) 215–219.Google Scholar
  20. 20.
    Bronstein, J. L., and Hoffmann, K. L., Spatial and temporal variation in frugivory at a neotropical figFicus pertusa Oikos49 (1987) 261–268.Google Scholar
  21. 21.
    Bronstein, J. L., Gouyon, P.-H., Gliddon, C., Kjellberg, F., and Michaloud, G., Ecological consequences of flowering asynchrony in monoecious figs: a simulation study. unpublished manuscript.Google Scholar
  22. 22.
    Brown, T. W., and Walsingham, F. G., The sycamore fig in Egypt. J. Hered.8 (1917) 3–12.Google Scholar
  23. 23.
    Butcher, F. G., The Florida fig wasp,Secundeisenia mexicana (Ashm.), and some of its hymenopterous symbionts. Fla. Ent.47 (1964) 235–238.Google Scholar
  24. 24.
    Carde, R. T., Chemo-orientation in flying insects, in: Chemical Ecology of Insects, pp. 111–124. Eds W. J. Bell and R. T. Carde. Chapman and Hall, New York 1984.Google Scholar
  25. 25.
    Chapman, R. F., Bernays, E. A., and Simpson, S. J., Attraction and repulsion of the aphid,Cavariella aegopodii by plant odors. J. chem. Ecol.7 (1981) 881–888.Google Scholar
  26. 26.
    Chopra, R. N., and Kaur, H., Pollination and fertilization in someFicus species. Beitr. Biol. Pfl.45 (1969) 441–446.Google Scholar
  27. 27.
    Compton, S. G., and Robertson, H. G., Complex interactions between mutualisms: ants tending homopterans protect fig seeds and pollinators. Ecology69 (1988) 1302–1305.Google Scholar
  28. 28.
    Condit, I. J., Caprifigs and caprification. Calif. Agric. exp. Sta. Bull.319 (1920) 341–377.Google Scholar
  29. 29.
    Condit, I. J., The Fig. Chronica Botanica, Waltham 1947.Google Scholar
  30. 30.
    Corlett, R. T., The phenology ofFicus benjamina andF. microcarpa in Singapore. J. Singapore natl Acad. Sci.13 (1984) 30–31.Google Scholar
  31. 31.
    Corlett, R. T., The phenology ofFicus fistulosa in Singapore. Biotropica19 (1987) 122–124.Google Scholar
  32. 32.
    Corner, E. J. H.,Ficus glabberima Bl. and the pedunculate species ofFicus subgen.Urostigma in Asia and Australasia. Phil. Trans. Roy. Soc. London, Ser. B281 (1978) 347–371.Google Scholar
  33. 33.
    Corner, E. J. H.,Ficus (Moraceae) and Hymenoptera (Chalcidoidea): figs and their pollinators. Biol. J. Linn. Soc.25 (1985) 187–195.Google Scholar
  34. 34.
    Cox, P. A., Extinction of the Hawaiian avifauna resulted in a change of pollinators for the leie,Freycinetia arborea. Oikos41 (1983) 195–199.Google Scholar
  35. 35.
    Cruden, R. W., Kinsman, S., Stockhouse II, R. E., and Linhart, Y. B., Pollination, fecundity, and the distribution of moth-flowered plants. Biotropica8 (1976) 204–210.Google Scholar
  36. 36.
    Cunningham, D. D., On the phenomena of fertilization inFicus roxburghii, Wall. A. Rev. bot. Gdn. Calcutta1 (Appendix) (1889) 13–47.Google Scholar
  37. 37.
    Damstra, K. S. J., Notes on Zimbabwean tree families. The fig family (Moraceae). Zimbabwe Sci. News19 (1985) 151–154.Google Scholar
  38. 38.
    Eisikowitch, D., and Galil, J., effect of wind on the pollination ofPancratium maritimum L. (Amaryllidaceae) by hawkmoths (Lepidoptera: Sphingidae). J. Anim. Ecol.40 (1971) 673–678.Google Scholar
  39. 39.
    Feinsinger, P., Wolfe, J. A., and Swarm, L. A., Island ecology: reduced hummingbird diversity and the pollination of plants, Trinidad and Tobago, West Indies. Ecology63 (1982) 494–506.Google Scholar
  40. 40.
    Foster, R. B., The seasonal rhythm of fruitfall on Barro Colorado Island, in: Ecology of a Tropical Forest, pp. 151–172. Eds E. G. Leigh, A. S. Rand and D. M. Windsor. Smithsonian Institution Press, Washington 1982.Google Scholar
  41. 41.
    Frank, S. A., Theoretical and Empirical Studies of Sex Ratios, Mainly in Fig Wasps. Master's Thesis, University of Florida, Gainesville 1983.Google Scholar
  42. 42.
    Frank, S. A., The behavior and morphology of the fig waspsPegoscapus assuetus andP. jimenezi: descriptions and suggested behavioral characters for phylogenetic studies Psyche91 (1984) 289–308.Google Scholar
  43. 43.
    Frank, S. A., Hierarchical selection theory and sex ratios. II. On applying the theory, and a test with fig wasps. Evolution39 (1985) 949–964.Google Scholar
  44. 44.
    Galil, J., Sycamore wasps from ancient Egyptian tombs. Isr. J. Ent.2 (1967) 1–10.Google Scholar
  45. 45.
    Galil, J., Pollination in dioecious figs: pollination ofF. fistulosa byCeratosolen hewitti. Gdn Bull. Singapore26 (1973) 303–311.Google Scholar
  46. 46.
    Galil, J., Fig biology. Endeavour1 (1977) 52–56.Google Scholar
  47. 47.
    Galil, J., and Eisikowitch, D., On the pollination ecology ofFicus sycomorus in East Africa. Ecology49 (1968) 259–269.Google Scholar
  48. 48.
    Galil, J., and Eisikowitch, D., Flowering cycles and fruit types inFicus sycomorus in Israel. New Phytol.67 (1968) 745–758.Google Scholar
  49. 49.
    Galil, J., and Eisikowitch, D., On the pollination ecology ofFicus religiosa in Israel. Phytomorphology18 (1968) 356–363.Google Scholar
  50. 50.
    Galil, J., and Eisikowitch, D., Further studies on the pollination ecology ofFicus sycomorus L. (Hymenoptera, Chalcidoidea, Agaonidae). Tijdschr. Ent.112 (1969) 1–13.Google Scholar
  51. 51.
    Galil, J., and Eisikowitch, D., Studies on mutualistic symbiosis between syconia and sycophilous wasps in monoecious figs. New Phytol.70 (1971) 773–787.Google Scholar
  52. 52.
    Galil, J., and Eisikowitch, D., Further studies on pollination ecology inFicus sycomorus. II. Pollen filling and emptying byCeratosolen arabicus Mayr. New Phytol.73 (1974) 515–528.Google Scholar
  53. 53.
    Galil, J., and Meiri, L., Number and structure of anthers in fig syconia in relation to behaviour of the pollen vectors. New Phytol.88, (1981) 83–87.Google Scholar
  54. 54.
    Galil, J., and Neeman, G., Pollen transfer and pollination in the common fig (Ficus carica L.). New Phytol.79 (1977) 163–171.Google Scholar
  55. 55.
    Galil, J., Dulberger, R., and Rosen, D., The effects ofSycophaga sycomori L. on the structure and development of the syconia inFicus sycomorus L. New Phytol.69 (1970) 103–111.Google Scholar
  56. 56.
    Galil, J., Ramirez B. W., and Eisikowitch, D., Pollination ofFicus costaricana andF. hemsleyana byBlastophaga estherae andB. tonduzi in Costa Rica (Hymenoptera: Chalcidoidea, Agaonidae). Tijdschr. Ent.116 (1973) 175–183.Google Scholar
  57. 57.
    Galil, J., Stein, M., and Horovitz, A., On the origin of the sycomore fig (Ficus sycomorus L.) in the Middle East. Gdn Bull. Singapore29 (1976) 191–205.Google Scholar
  58. 58.
    Galil, J., Zeroni, M., and Bar-Shalom, D., Carbon dioxide and ethylene effects in the co-ordination between the pollinatorBlastophaga quadraticeps and the syconium inFicus religiosa. New Phytol.72 (1973) 1113–1127.Google Scholar
  59. 59.
    Godfray, H. C. J., Virginity in haplodiploid populations: a study on fig wasps. Ecol. Ent.13 (1988) 283–291.Google Scholar
  60. 60.
    Grandi, G., Studio morfologico e biologico dellaBlastophaga psenes (L.) Boll. Lab. Zool. Portici14 (1920) 63–204.Google Scholar
  61. 61.
    Hamilton, W. D., Wingless and fighting males in fig wasps and other insects, in: Sexual Selection and Reproductive Competition in Insects, pp. 167–220. Eds M. S. Blum and N. A. Blum. Academic Press, London 1979.Google Scholar
  62. 62.
    Heinrich, B., Energetics of pollination. A. Rev. ecol. Syst.6 (1975) 139–170.Google Scholar
  63. 63.
    Henderson, L. J., Fig wasps of Heron Island, Great Barrier Reef. Proc. Roy. Soc. Qd.93 (1982) 21–29.Google Scholar
  64. 64.
    Herre, E. A., Sex ratio adjustment in fig wasps. Science228 (1985) 896–898.Google Scholar
  65. 65.
    Herre, E. A., Coevolution of reproductive characteristics in twelve species of New World figs and their pollinator wasps. Experientia45 (1989) 637–647.Google Scholar
  66. 66.
    Herrera, C. M., Vertebrate-dispersed plants of the Iberian Peninsula: a study of fruit characteristics. Ecol. Monogr.57 (1987) 305–331.Google Scholar
  67. 67.
    Hespenheide, H. A., Selective predation by two swifts and a swallow in Central America. Ibis117 (1975) 82–99.Google Scholar
  68. 68.
    Hill, D. S., Figs of Hong Kong. Hong Kong University Press, Hong Kong 1967.Google Scholar
  69. 69.
    Hill, D. S., Figs (Ficus spp.) and fig wasps (Chalcidoidea). J. nat. Hist.1 (1967) 413–434.Google Scholar
  70. 70.
    Hoffmann, K. H., Metabolic and enzyme adaptation to temperature, in Environmental Physiology and Biochemistry of Insects, pp. 1–32. Ed. K. H. Hoffmann. Springer Verlag. Berlin 1984.Google Scholar
  71. 71.
    Janos, D. P., Mycorrhizae influence tropical succession. Biotropica12 (suppl) (1980) 56–64.Google Scholar
  72. 72.
    Janzen, D. H., Synchronization of sexual reproduction of trees within the dry season in Central America. Evolution21 (1967) 620–637.Google Scholar
  73. 73.
    Janzen, D. H., Dissolution of mutualism betweenCecropia and itsAzteca ants. Biotropica5 (1973) 15–28.Google Scholar
  74. 74.
    Janzen, D. H., How to be a fig. A. Rev. Ecol. Syst.10 (1979) 13–51.Google Scholar
  75. 75.
    Janzen, D. H., How many babies do figs pay for babies? Biotropica11 (1979) 48–50.Google Scholar
  76. 76.
    Janzen, D. H., How many parents do the wasps from a fig have? Biotropica11 (1979) 127–129.Google Scholar
  77. 77.
    Johri, B. M., and Konar, R. N., The floral morphology and embryology ofFicus religiosa Linn. Phytomorphology6 (1956) 97–111.Google Scholar
  78. 78.
    Joseph, K. J., Recherches sur les chalcidiens,Blastophaga psenes L. etPhilotrypesis L. du figuier (Ficus carica L.). Annls Sci. nat. Zool. 2e ser. XX13 (1958) 187–260.Google Scholar
  79. 79.
    Kjellberg, F., Doumesche, B., and Bronstein, J. L., Longevity of a fig wasp (Blastophaga psenes). Proc. K. ned. Akad. Wet. Ser.C 91 (1988) 117–122.Google Scholar
  80. 80.
    Kjellberg, F., and Maurice, S., Seasonality in the reproductive phenology ofFicus: Its evolution and consequences. Experientia45 (1989) 653–660.Google Scholar
  81. 81.
    Kjellberg, F., Gouyon, P.-H., Ibrahim, M., Raymond, M., and Valdeyron, G., 1987. The stability of the symbiosis between dioecious figs and their pollinators: a study ofFicus carica L. andBlastophaga psenes L. Evolution41 (1987) 693–704.Google Scholar
  82. 82.
    Lack, D., Darwin's Finches. Cambridge University Press, Cambridge 1947.Google Scholar
  83. 83.
    Levins, R., Thermal acclimation and heat resistance inDrosophila species. Am. Nat.103 (1969) 483–499.Google Scholar
  84. 84.
    Losey, G. S., Cleaning symbiosis in Puerto Rico with comparison to the tropical Pacific. Copeia1974 (1974) 960–970.Google Scholar
  85. 85.
    Michaloud, G., Aspects de la Reproduction des Figuiers Monoiques en Fôret Equatoriale Africaine. Ph. D. Dissertation, Université des Sciences et Techniques du Languedoc. Montpellier, France 1988.Google Scholar
  86. 86.
    Michaloud, G., and Michaloud-Pelletier, S.,Ficus hemi-epiphytes (Moraceae) et arbres supports. Biotropica19 (1987) 125–136.Google Scholar
  87. 87.
    Michaloud, G., Michaloud-Pelletier, S., Wiebes, J. T., and Berg, C. C., The co-occurrence of two pollinating species of fig wasp and one species of fig. Proc. K. ned. Akad. Wet. Ser. C88 (1985) 93–119.Google Scholar
  88. 88.
    Milton, K., Windsor, D. M., Morrison, D. W., and Estribi, M. A., Fruiting phenologies of two neotropicalFicus species. Ecology63 (1982) 752–762.Google Scholar
  89. 89.
    Newton, L. E., and Lomo, A., The pollination ofFicus vogelii in Ghana. Bot. J. Linn. Soc.78 (1979) 21–30.Google Scholar
  90. 90.
    Parsons, P. A., Resistance to cold temperature stress in populations ofD. melanogaster andD. simulans. Aust. J. Zool.25 (1977) 693–698.Google Scholar
  91. 91.
    Parsons, P. A., Parallel climatic races for tolerances to high temperature-desiccation stress in twoDrosophila species. J. Biogeog.7 (1980) 97–101.Google Scholar
  92. 92.
    Pemberton, C. E., The fig wasp in its relation to the development of fertile seed in the Moreton Bay fig. Hawaiian Planters' Rec.24 (1921) 297–319.Google Scholar
  93. 93.
    Pemberton, C. E., Fig wasps established on Kauai. Proc. Hawaiian ent. Soc.8 (1934) 399.Google Scholar
  94. 94.
    Ramirez B. W., Host specificity of fig wasps (Agaonidae). Evolution24 (1970) 681–691.Google Scholar
  95. 95.
    Ramirez B. W., Taxonomic and biological studies of neotropical fig wasps. U. Kans. Sci. Bull.49 (1970) 1–44.Google Scholar
  96. 96.
    Ramirez B. W., Germination of seeds of New World Urostigma (Ficus) and ofMorus rubra L. (Moraceae). Revta Biol. trop.24 (1976) 1–6.Google Scholar
  97. 97.
    Rawlins, J. E., Thermoregulation by the black swallowtail butterfly,Papilio polyxenes (Lepidoptera: Papilionidae). Ecology61 (1980) 345–357.Google Scholar
  98. 98.
    Ricklefs, R. E., Geographical variation in clutch size among passerine birds: Ashmole's hypothesis. Auk97 (1980) 38–49.Google Scholar
  99. 99.
    Rickson, R. F., Progressive loss of ant-related traits ofCecropia peltata on selected Caribbean islands. Am. J. Bot.64 (1977) 585–592.Google Scholar
  100. 100.
    Ridley, H. N., The Dispersal of Plants Throughout the World. L. Reeve and Co, Kent 1930.Google Scholar
  101. 101.
    Risch, S. J., and Rickson, F. R., Mutualism in which ants must be present before plants produce food bodies. Nature291 (1981) 149–150.Google Scholar
  102. 102.
    Rosenzweig, M. L., Net primary productivity of terrestrial communities: prediction from climatological data. Am. Nat.102 (1968) 67–74.Google Scholar
  103. 103.
    Stanley, S. M., and Parsons, P. A., The response of the cosmopolitan species,Drosophila melanogaster to ecological gradients. Proc. ecol. Soc. Aust.11 (1981) 121–130.Google Scholar
  104. 104.
    Thornthwaite, C. W., and Associates, Average climatic water balance data of the continents. Part I. Africa. Publ. Climat.15 (1962).Google Scholar
  105. 105.
    Thornthwaite, C. W., and Associates, Average climatic water balance data of the continents. Part II. Asia (excluding USSR). Publ. Climat.16 (1963).Google Scholar
  106. 106.
    Todzia, C., Growth habits, host tree species, and density of hemiepiphytes on Barro Colorado Island, Panama. Biotropica18 (1986) 22–27.Google Scholar
  107. 107.
    Tukey, L. D., Effect of night temperature on growth of the fruit of the Sour Cherry. Bot. Gaz.114 (1952) 155–165.Google Scholar
  108. 108.
    Valdeyron, G., Sur le système génétique du figuierFicus carica L. Essai d'interprétation évolutive. Annls Inst. natl. agron. (Paris)5 (1967) 1–167.Google Scholar
  109. 109.
    Valdeyron, G., and Lloyd, D. G., Sex differences and flowering phenology in the common fig,Ficus carica L. Evolution33 (1979) 673–685.Google Scholar
  110. 110.
    Valdeyron, G., Kjellberg, F., Ibrahim, M., Raymond, M., and Valizadeh, M., A one species-one population plant: how does the common fig escape genetic diversification? in: Genetic Differentiation and Dispersal in Plants, pp. 383–393. Eds P. Jacquard, G. Heim and J. Antonovics. Springer Verlag. Berlin 1985.Google Scholar
  111. 111.
    Valizadeh, M., Valdeyron, G., Kjellberg, F., and Ibrahim, M., Le flux génique chez le figuier,Ficus carica: la dispersion par le pollen dans un peuplement dense. Acta oecol., Oecol. Plant.8 (1987) 143–154.Google Scholar
  112. 112.
    Vallese, F., La caprificazione in terra d'Otrando. Lecce. Tipografio Sociale Cooperation, Italy 1904.Google Scholar
  113. 113.
    Verkerke, W., Anatomy ofFicus ottoniifolia (Moraceae) syconia and its role in the fig-fig wasp symbiosis. Proc. K. ned. Akad. Wet. Ser C89 (1986) 443–469.Google Scholar
  114. 114.
    Verkerke, W., Syconial anatomy ofFicus asperifolia (Moraceae), a gynodioecious tropical fig. Proc. K. ned. Akad. Wet. Ser.C 90 (1987) 461–492.Google Scholar
  115. 115.
    Verkerke, W., Sycone morphology and its influence on the flower structure ofFicus sur (Moraceae). Proc. K. ned. Akad. Wet. Ser. C91 (1988) 319–344.Google Scholar
  116. 116.
    Verkerke, W., Structure and function of the fig. Experientia45 (1989) 612–622.Google Scholar
  117. 117.
    Watt, W. B., Adaptive significance of pigment polymorphisms inColias butterflies. I. Variation of melanin pigment in relation to thermoregulation. Evolution22 (1968) 437–458.Google Scholar
  118. 118.
    Wharton, R. A., Tilson, J. W., and Tilson, R. L., Asynchrony in a wild population ofFicus sycomorus. S. Afr. J. Sci.76 (1980) 478–480.Google Scholar
  119. 119.
    Wiebes, J. T., Taxonomy and host preferences of Indo-Australian fig wasps of the genusCeratosolen (Agaonidae). Tijdschr. Ent.106 (1963) 1–112.Google Scholar
  120. 120.
    Wiebes, J. T., Indo-Malayan and Papuan fig wasps (Hymenoptera, Chalcidoidea) 2. The genusPleistodontes Saunders (Agaonidae). Zool. Meded. Leiden38 (1963) 303–321.Google Scholar
  121. 121.
    Wiebes, J. T., The genusKradibia Saunders and an addition toCeratosolen Mayr (Hymenoptera Chalcidoidea, Agaonidae). Zool. Meded. Leiden53 (1978) 165–184.Google Scholar
  122. 122.
    Wiebes, J. T., Co-evolution of figs and their insect pollinators. A. Rev. Ecol. Syst.10 (1979) 1–12.Google Scholar
  123. 123.
    Wiebes, J. T., Records and descriptions ofPegoscapus Cameron (Hymenoptera Chalcidoidea, Agaonidae). Proc. K. ned. Acad. Wet. Ser. C86 (1983) 243–253.Google Scholar
  124. 124.
    Williams, N. H., Floral fragrances as cues in animal behavior, in: Handbook of Experimental Pollination Biology, pp. 50–72. Eds C. E. Jones and R. J. Little. Van Nostrand Reinhold, New York 1983.Google Scholar
  125. 125.
    Windsor, D. M., Morrison, D. W., Estribi, M. A., and de Leon, B., Phenology of fruit and leaf production by ‘strangler’ figs on Barro Colorado Island, Panama. Experientia45 (1989) 647–653.Google Scholar
  126. 126.
    Wolda, H., Insect seasonality: why? A. Rev. ecol. Syst.19 (1988) 1–18.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1989

Authors and Affiliations

  • J. L. Bronstein
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations