Journal of Systems Integration

, Volume 5, Issue 3, pp 187–199 | Cite as

Integrated systems I: Design principles

  • P. A. D. de Maine
  • K. D. Bradley
  • W. H. Carlisle
  • W. B. Dress


The following design principles are being used in an ongoing project to realize an integrated family of rule based systems that can be easily used separately or together in different combinations to solve problems common to many different disciplines. Some essential features of this family are:
  1. (1)

    Individual members can be used in the normal way as user-friendly rule based systems or they can be transparently invoked by other user-friendly rule based systems without interrogating users.

  2. (2)

    The knowledge (or rule) bases of key members do not mimic the perceived mode of human thought; therefore, they can predict events that cannot be predicted by the state-of-the-art alone.

  3. (3)

    The Law of Conservation of Mass/Energy is used to detect and correct computational errors.



Integrated Systems Multi-Tier Interfaces Discipline Independent Rule Based Systems Autodeductive Systems Autolearning Systems Detection and Correction of Computational Errors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. D. de Maine and M. M. de Maine, “Computer aids for chemists.”Anal. Chim. Acta 235, pp. 7–26, 1990.CrossRefGoogle Scholar
  2. 2.
    P. A. D. de Maine, “Design principles for discipline independent rule based systems”.Foundations of Computing & Decision Sciences 19, pp. 115–125, 1994.Google Scholar
  3. 3.
    D. B. Brown, K. D. Haga and O. Weyrich, “QUEST—Query utility environment for software testing”.International Test and Evaluation Association 1986 Symposium Proceedings, pp. 38–43, 1986.Google Scholar
  4. 4.
    Z. S. Hippe, “Artificial intelligence in chemistry: Present status and future goals,” in:Proc. 7th Int. Conf. on Comp. in Chem. Research and Education, Eds. Josef Brandt and Ivar K. Ugi, Dr. Alfred Huthig Verlag GmbH. Heidelberg, West Germany, 1989, pp. 165–178.Google Scholar
  5. 5.
    P. A. D. de Maine, B. C. Cartee, M. S. Wojtyna, and M. M. Maine, “A computer tool kit for chemists I. Design considerations for interfaces.”J. Chem. Inf. & Comp. Sci. 30, pp. 155–159, 1990.Google Scholar
  6. 6.
    P. A. D. de Maine and K. G. Price, “Integrated systems II. Multi-tier interfaces for integrating families of systems”.J. of Systems Integration 5, pp. 201–217, 1995.Google Scholar
  7. 7.
    K. D. Bradley and P. A. D. de Maine, “Design and applications of discipline independent rule based systems”, inProceedings 2nd. Expert Systems World Congress, Lisbon, Portugal, 1994. Published on CD-ROM.Google Scholar
  8. 8.
    P. A. D. de Maine and K. D. Bradley, “Development and application of a family of general expert systems”, Report No. 18 of the Series:Automatic Systems for the Physical Sciences, Computer Science and Engineering Department, Auburn University, Auburn, AL 36849-40 pages, August, 1990.Google Scholar
  9. 9.
    G. Salton,Automatic Text Processing, the Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley: Reading, MA, 1989.Google Scholar
  10. 10.
    G. Salton and M. J. McGill,Introduction to Modern Information Retrieval. McGraw-Hill, Inc.: New York, 1983, pp. 118–145.Google Scholar
  11. 11.
    D. J. Hillman, “Mathematical theories of relevance with respect to the problems of indexing,” Report No. 2: “An algorithm for document characterization.” Report to the National Science Foundation on Grant No. GN-177, March 12, 1965.Google Scholar
  12. 12.
    D. J. Hillman, “Document retrieval theory, relevance, and the methodology of evaluation”. Report No. 1: “Characterization and connectivity.” Report to the National Science Foundation on Grant No. GN-451, May 24, 1966.Google Scholar
  13. 13.
    R. H. Belev,Knowledge Representation for Decision Support Systems. North-Holland Publishing Company: Amsterdam, 1985.Google Scholar
  14. 14.
    R. I. Levine, D. E. Drang, and B. Edelson, “A comprehensive guide to AI and expert systems”. McGraw-Hill College Book Division: New York, 1986.Google Scholar
  15. 15.
    P. A. D. de Maine and M. M. de Maine, “Automatic deductive systems I. Chemical reaction models”.Comp. and Chem. 11, pp. 49–65, 1987.CrossRefGoogle Scholar
  16. 16.
    H. Borko and M. Bernick,J. Assoc. Comput. Mach. 10, p. 151, 1963.Google Scholar
  17. 17.
    J. H. Williams,Proc. Fall Joint Comput. Conf., p. 161, 1963.Google Scholar
  18. 18.
    P. A. D. de Maine and M. M. de Maine, “Automatic detection and correction of computational errors in programs”.J. of Applied Mathematics & Computer Science 4, pp. 101–120, 1994.Google Scholar
  19. 19.
    P. A. D. de Maine and M. M. de Maine, “A computer tool kit for chemists III. Error detection and corrective action procedure.”Comp. & Chem. 16, pp. 53–60, 1992.Google Scholar
  20. 20.
    P. A. D. de Maine and M. M. de Maine, “A computer tool kit for chemists II. Maximum tolerance procedure”.Anal. Chim. Acta 256, pp. 361–368, 1992.Google Scholar
  21. 21.
    P. A. D. de Maine and M. M. de Maine, “Procedures for detecting and correcting computational errors”.. Report No. 17 of the Series: Automatic Systems for the Physical Sciences, Computer Science and Engineering Department, Auburn University, Auburn, AL 36849, 45 pages, July 1990.Google Scholar
  22. 22.
    D. Bell and J. Grimson,Distributed Database Systems. Addison-Wesley, 1992.Google Scholar
  23. 23.
    J. van den Burg, “Telecommunications-related information services,” inProceedings of the NATO Advanced Study Institute on Information Technology and the Computer Network, Bonas, France, August 21–September 2, 1983.Google Scholar
  24. 24.
    P. A. D. de Maine, K. D. Bradley, and S. M. Jodis, “SOLID: A high-speed logical data independent management system with bounded search times.”Online & CD ROM Review 17, 1, pp. 1–8, 1993.Google Scholar
  25. 25.
    P. A. D. de Maine, “HSGIMS—A high-speed tool with bound search times for transparently managing and manipulating information.”Proceedings of CIKM-93, pp. 216–222, 1993.Google Scholar
  26. 26.
    K. D. Bradley and P. A. D. de Maine, “High-speed general independent management system (HSGIMS)”.Proceedings of DATABASE'94, pp. 379–391, 1994.Google Scholar
  27. 27.
    P. A. D. de Maine, S. Leong, and C. G. Davis, “A transportable programming language (TPL) system I. Overview”.Int. J. Comp. and Inf. Sci. 14, pp. 161–182, 1985.Google Scholar
  28. 28.
    S. Leong, S. M. Jodis, K. Sullivan, O. Jiang, and P. A. D. de Maine, “A transportable programming language (TPL) system II. The bifunctional compiler system”.I.E.E.E. Trans. on Software Engineering 16(6), pp. 639–646, 1990.CrossRefGoogle Scholar
  29. 29.
    R. C. Gonzalez and R. Safabakhsh, “Computer vision techniques for industrial applications and robot control”.I.E.E.E. Computer, pp. 15–17, 1982.Google Scholar
  30. 30.
    C. S. G. Lee, R. C. Gonzalez, and K. S. Fu, “Tutorial on ROBOTICS”, 2nd edition, inI.E.E.E. Computer. Society Press: Washington DC, 1986.Google Scholar
  31. 31.
    R. C. Gonzalez and P. Wintz,Digital Image Processing 2nd edition. Addison-Wesley Book Express, 1987.Google Scholar
  32. 32.
    K. S. Fu, C. S. G. Lee, and R. C. Gonzalez,Robotics, Control, Sensing, Vision, & Intelligence. McGraw Hill, 1987.Google Scholar
  33. 33.
    T. Y. Young and K. S. Fu, eds.,Handbook of Pattern Recognition and Image Processing. Academic Press, Harcourt Brace Jovanovich, 1986.Google Scholar
  34. 34.
    K. Fukunaga,Introduction to Statistical Pattern Recognition. Academic Press Inc., 1990.Google Scholar
  35. 35.
    P. A. D. de Maine, P. A-B. Ng, and M. M. de Maine, “Perception and identification of entities in different environments”. Report No. 11 of the Series: Automatic Systems for the Physical Sciences, Computer Science and Engineering Department, Auburn University, Auburn, AL 36849, 35 pages, 1987.Google Scholar
  36. 36.
    J. A. Craig, S. C. Berezner, H. C. Carney, and C. T. Longyear, “Deacon: Direct English access and control.”Proc. Fall Joint Computer Conference, pp. 365–380, 1966.Google Scholar
  37. 37.
    D. J. Hillman and A. J. Kasarda, “The LEADER retrieval system”.AFIPS Proceedings 34, pp. 447–455, 1969.Google Scholar
  38. 38.
    G. Salton, Ed.,The SMART Retrieval System: Experiments in Automatic Document Processing. Prentice-Hall: Englewood Cliffs, NJ, 1971.Google Scholar
  39. 39.
    R. Rosen,Anticipatory Systems. Pergamon Press: Oxford, 1985.Google Scholar
  40. 40.
    J. H. Andreae,Thinking With the Teachable Machine. Academic Press: New York, 1977.Google Scholar
  41. 41.
    R. Rosen, “Some epistemological issues in physics and biology,” p. 322 inQuantum Implications B. J. Hiley and F. D. Peat, Eds., Routledge & Kegan Paul: New York, 1987, p. 322.Google Scholar
  42. 42.
    G. M. Edleman,Neural Darwinism. Basic Books: New York, 1987, pp. 256–69.Google Scholar
  43. 43.
    K. C. O'Kane, “A language for implementing information retrieval software”.Online & CD ROM Review 16, pp. 127–137, 1992.Google Scholar
  44. 44.
    K. Boe, S. Dannelly, and J. McCreary, “TROLLIUS—A transputer operating system”. Final Report. Computer Science and Engineering Dept., 106 Dunstan Hall, Auburn University, Auburn, AL 36849.Google Scholar
  45. 45.
    TRANSPUTER HANDBOOK—Multiprocessing Made Simple, INMOS Division of SGS, Thompson Microelectronics, October, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • P. A. D. de Maine
    • 1
  • K. D. Bradley
    • 2
  • W. H. Carlisle
    • 3
  • W. B. Dress
    • 4
  1. 1.Department of Computer Science and EngineeringAuburn University
  2. 2.Department of Computer Science and EngineeringAuburn University
  3. 3.Department of Computer Science and EngineeringAuburn University
  4. 4.The Oak Ridge National LaboratoriesOak Ridge

Personalised recommendations