Journal of thermal analysis

, Volume 38, Issue 11, pp 2515–2528 | Cite as

The heat capacity of fluorinated propane and butane derivatives by differential scanning calorimetry

  • Sun -Hee Hwang
  • D. D. DesMarteau
  • A. L. Beyerlein
  • N. D. Smith
  • P. Joyner


The constant pressure liquid-phase heat capacities of 21 hydrogen containing fluorinated propane and butane derivatives and one fluorinated ether (CF3OCF2H) with boiling points ranging from -34.6° to 76.7°C have been measured to 3% accuracy by differential scanning calorimetry at 40°C. The measurements are needed to help identify alternative refrigerants and blowing agents that do not deplete the stratospheric ozone layer. The DSC method has two significant advantages for this purpose, which are:
  1. (i)

    only small samples (less than 100 mg) are required, and

  2. (ii)

    the instruments are available in many laboratories and can be used for the heat capacity measurement of liquids with subambient boiling points without modification or special accessories.



fluorinated propane and butane heat capacity 


Mittels DSC bei 40°C wurden die Flüssigphasen-Wärmekapazitäten für konstanten Druck von 21 wasserstoffhaltigen fluorierten Propan- und Butanderivaten und von einem fluorierten Ether (CF3OCF2H) mit Siedenpunkten zwischen -34.6° und 76.7°C gemessen. Diese Messungen dienen der Suche nach alternativen Kühl- und Treibmitteln, welche die Ozonschicht der Stratosphäre nicht mindern. Für diese Aufgabe hat die DSC-Methode zwei eindeutige Vorteile:
  1. (i)

    es werden nur geringe Probenmengen benötigt (weniger als 100 mg) und

  2. (ii)

    die Geräte sind in vielen Laboratorien zugänglich und können ohne Ånderungen zur Messung von Wärmekapazitäten von Flüssigkeiten mit Siedepunkten unter Umgebungstemperatur verwendet werden.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    United Nations Environmental Programme (UNEP) 1987. Montreal Protocol on Substances that Deplete the Ozone Layer, Final Act, New York, United Nations.Google Scholar
  2. 2.
    Clean Air Act, Title VI — Stratospheric Ozone Protection, Public Law 101–549, November 15, 1990.Google Scholar
  3. 3.
    The number code used to designate compounds was devised by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) for methane, ethane, and cyclo-alkane refrigerants [See Refrigerating Engineering, 65 (1957) 49]. The code was unofficially extended to include a wide variety of fluoroaliphatics by manufacturers of these chemicals.Google Scholar
  4. 4.
    United Nations Environment Programme (UNEP) Meeting, London, 1990.Google Scholar
  5. 5.
    A. L. Beyerlein, D. D. DesMarteau and S. H. Hwang, International CFC and Halon Alternatives Conference, Sponsored by the Alliance for Responsible CFC Policy, Baltimore, MD, December 3–5, 1991.Google Scholar
  6. 6.
    M. O. McLinden, J. S. Gallager, L. A. Weber, G. Morrison, D. Ward, A. R. H. Goodwin, M. R. Moldover, J. W. Schmidt, H. B. Chae, T. J. Bruno, J. F. Ely and M. L. Huber, ASHRAE Trans., 95 (1989) 263.Google Scholar
  7. 7.
    B. Wunderlich, Thermal Analysis, Academic Press, New York 1990.Google Scholar
  8. 8.
    W. Hemminger and G. Hohne, Calorimetry, Fundamentals and Practice, Verlag Chemie, Weinheim, Federal Republic of Germany 1984.Google Scholar
  9. 9.
    E. A. Turi, ed., “Thermal Characterization of Polymeric Materials”, Academic Press, New York 1982.Google Scholar
  10. 10.
    S. C. Mraw and D. F. Naas-O'Rourke, J. Chem. Thermodynam., 12 (1980) 691.CrossRefGoogle Scholar
  11. 11.
    S. C. Mraw, J. L. Heidman, S. C. Hwang and C. Tsonopoulos, Ind. Eng. Chem. Process Des. Dev., 23 (1984) 577.CrossRefGoogle Scholar
  12. 12.
    S. C. Mraw and D. F. Naas-O'Rourke, J. Chem. Thermodynamics, 13 (1981) 199.Google Scholar
  13. 13.
    M. Stephens and J. D. Olson, Thermochim. Acta, 76 (1984) 79.CrossRefGoogle Scholar
  14. 14.
    R. C. Reid, I. M. Prausnitz and B. E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York 1987.Google Scholar
  15. 15.
    Thermophysical Properties of Refrigerants, American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., New York 1976.Google Scholar
  16. 16.
    D. W. Osborne, C. S. Garner, R. N. Doescher and D. M. Yost, J. Am. Chem. Soc., 63 (1941) 3496.CrossRefGoogle Scholar
  17. 17.
    L. Riedel, Z. Gesamte Kalte-Ind., 46 (1939) 105.Google Scholar
  18. 18.
    R. C. Downing, Transport Properties of ‘Freon’ Fluorocarbons and Other Fluorinated Compounds, Freon Technical Bulletin C-30A, E. I. DuPont de Nemours and Co., Inc., 1966.Google Scholar
  19. 19.
    H. Suzuki and B. Wunderlich, J. Thermal Anal., 29 (1984) 1369.Google Scholar
  20. 20.
    U. Gaur, A. Mehta and B. Wunderlich, J. Thermal Anal., 13 (1978) 71.CrossRefGoogle Scholar
  21. 21.
    B. I. Lee and M. G. Kesler, AIChE J., 21 (1975) 510.CrossRefGoogle Scholar
  22. 22.
    R. E. Thek and L. I. Stiel, AIChE J., 12 (1966) 599.CrossRefGoogle Scholar
  23. 23.
    R. E. Thek and L. I. Stiel, AlChe J., 13 (1967) 626.Google Scholar
  24. 24.
    R. W. Hankinson and G. H. Thomson, AIChE J., 25 (1979) 653.CrossRefGoogle Scholar
  25. 25.
    L. Riedel, Chem. Ing. Tech., 26 (1954) 679.CrossRefGoogle Scholar
  26. 26.
    B. Wunderlich, J. Thermal Anal., 32 (1987) 1949.CrossRefGoogle Scholar
  27. 27.
    Y. Jin and B. Wunderlich, J. Thermal Anal., 36 (1990) 765, 1519.CrossRefGoogle Scholar

Copyright information

© Wiley Heyden Ltd., Chichester and Akadémiai Kiadó, Budapest 1992

Authors and Affiliations

  • Sun -Hee Hwang
    • 1
  • D. D. DesMarteau
    • 1
  • A. L. Beyerlein
    • 1
  • N. D. Smith
    • 1
    • 2
  • P. Joyner
    • 1
    • 3
  1. 1.H. L. Hunter Chemistry LaboratoryClemson UniversityClemson
  2. 2.Air and Energy Engineering Research LaboratoryU.S. Environmental Protection AgencyResearch Triangle Park
  3. 3.Electric Power Research InstitutePalo AltoUSA

Personalised recommendations