Advertisement

Netherlands Journal of Plant Pathology

, Volume 96, Issue 3, pp 119–132 | Cite as

Control of Fusarium wilt in carnation grown on rockwool by Pseudomonas sp. strain WCS417r and by Fe-EDDHA

  • R. Van Peer
  • A. J. Van Kuik
  • H. Rattink
  • B. Schippers
Article

Abstract

In carnations grown on rockwool disease incidence of fusarium wilt caused byFusarium oxysporum f.sp.dianthi (Fod) was reduced when Fe-EDDHA instead of Fe-DTPA was used as iron source in the nutrient solution. Addition ofPseudomonas sp. strain WSC417r intensified this reduction in the cultivar Pallas, moderately resistant to Fusarium, but not in the susceptible cultivar Lena. Treatment of plants with Fe-EDDHA instead of Fe-DTPA as iron source resulted in higher numbers and percentages on the roots, ofin vitro antagonistic fluorescent pseudomonads. However, differences were only significant at 56 days after planting for cv. Lena and at 14 and 28 days after planting for cv. Palas. Both chelators, at different concentrations, had no effect on root colonization by eitherPseudomonas sp. strain WCS417r orFod strain WCS816. However, when coinoculated, reduced numbers of propagules ofFusarium were found at concentrations of Fe-EDDHA lower than 10−5 M.

Higher concentrations of the siderophore fusarine produced byFod strain WCS816 were demonstrated when Fe-EDDHA instead of Fe-DTPA was used as iron source in culture media. At equal concentrations, no such differences were found in the amount of siderophore produced by WCS417r. Germ tube length ofFod was less with Fe-EDDHA than with Fe-DTPA. The reduction of germ tube length was stronger when the purified siderophore of WCS417r was added in excess to the culture media with Fe-EDDHA than those with Fe-DTPA. Therefore, the observed reduction of germ tube growth can not completely be explained by iron deprivation. It appeared that EDDHA exhibited a toxic effect for conidia ofFod strain WCS816 as well.

we conclude that the observed disease reduction by Fe-EDDHA is a consequence of a limitation of iron availability forFod. This limitation is possibly intensified by the increase in number or percentage of antagonistic fluorescent pseudomonads that strongly compete for iron. The additional effect after bacterization withPseudomonas strain WCS417r in Fe-EDDHA treated carnations of cv. Pallas is likely to be due, at least partly, to a direct competition for iron between the siderophores ofFod strain WCS816 and ofPesudomonas sp. strain WCS417r.

Samenvatting

Verwelkingsziekte in anjers op steenwol, veroorzaakt doorFusarium oxysporum f. sp.dianthi (Fod), werd gereduceerd indien het ijzer-chelaat Fe-EDDHA in plaats van Fe-DTPA werd toegevoegd aan de nutriëntenvloeistof. Bacterisatie metPseudomonas sp. stam WCS417r had een additioneel effect bij de matig resistence cultivar Pallas maar niet bij de vatbare cultivar Lena. Toevoeging van Fe-EDDHA in plaats van Fe-DTPA aan planten als ijzerbron resulteerde op de wortels in hogere aantallen en percentages fluorescerende pseudomonaden, diein vitro antagonistisch waren ten opzichte vanFod. De verschillen waren echter alleen significant 56 dagen na planten voor de cultivar Lena en 14 en 28 dagen na planten voor de cultivar Pallas. Beide chelaten vertoonden bij verschillende concentraties geen effect op de kolonisatie van de wortel door beide microorganismen. Echter, wanneer beide micro-organismen gezamelijk werden toegevoegd nam de wortelkolonisatie doorFod stam WCS816 af bij concentraties lager dan 10−5 M Fe-EDDHA. Er werd meer van het siderofoor fusarine doorFod stam WCS816 geproduceerd bij concentraties lager dan 10−4 M Fe indien Fe-EDDHA in plaats van Fe-DTPA als ijzerbron aan het cultuurmedium was toegevoegd. Er werd geen effect van beide chelaten gevonden op de siderofoorproduktie door WCS417r. Indien een overmaat van het gezuiverde siderofoor van WCS417r werd toegevoegd aan Fe-EDDHA werden een sterkere afname van de kiembuislengte gevonden dan toevoeging aan Fe-DTPA. De reductie van de kiembuislengte bleek niet volledig verklaard te kunnen worden door een afname van de ijzerbeschikbaarheid. Het chelaat EDDHA heeft ook een toxisch effect op conidiën van fusarium.

Wij concluderen, dat de waargenomen reductie van de verwelkingziekte door Fe-EDDHA een gevolg is van de afname van de ijzerbeschikbaarheid voorFod. Dit wordt waarschijnlijk versterkt door de ontwikkeling van een antagonistische, fluorescerendePseudomonas-populatie die sterk concurreren om ijzer. Het additioneel effect dat door bacterisatie metPseudomonas sp. WCS417r van de met Fe-EDDHA behandelde matig resistante anjers (‘Pallas’) werd verkregen is voor een deel het gevolg van een directe concurrentie om ijzer tussen de sideroforen vanFod stam WCS816 en vanPseudomonas sp. stam WCS417r.

Additional keywords

biological control carnation iron pseudomonads rockwool siderophores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahl, P., Voisard, C. & Défago, G., 1986. Iron-bound siderophores, cyanic acid, and antibiotics involved in suppression ofThielaviopsis basicola by aPseudomonas fluorescens strain. Journal of Phytopathology 116: 121–134.Google Scholar
  2. Baayen, R.P. & Niemann, G.N., 1989. Correlations between accumulation of dianthramides, dianthalexin and unknown compounds, and partial resistance toFusarium oxysporum f.sp.dianthi in eleven carnation cultivars. Journal of Phytopathology 126: 281–292.Google Scholar
  3. Emergy, T., 1965. Isolation, characterization, and properties of fusarinine, a hydroxamic acid-derivative of ornithine. Biochemistry 4: 1410–1417.PubMedGoogle Scholar
  4. Emergy, T., 1974. Biosynthesis and mechanism of action of hydroxamate-type siderophores. In: J.B. Neilands, (Ed.), Microbial iron metabolism. Academic Press, New York and London, p. 107–122.Google Scholar
  5. Gams, W. & Laar, W. van, 1982. The use of solacol (valida-mycine) as a growth retardant in the isolation of soil fungi. Netherlands Journal of Plant Pathology 88: 39–45.Google Scholar
  6. Geels, F.P., Lamers, J.G., Hoekstra, O. & Schippers, B., 1986. Potato plant responses to seed tuber bacterization in the field in various rotations. Netherlands Journal of Plant Pathology 92: 257–272.Google Scholar
  7. Hofstad, G.A.J.M. van der, Marugg, J.D., Verjans, G.M.G.M. & Weisbeek, P.J., 1986. Characterization and structure analysis of the siderophore produced by the PGPRPseudomonas putida strain WCS358. In: T.R. Swinburne (Ed.), Iron, siderophores and plant diseases. Plenum, London, New York, p. 21–27.Google Scholar
  8. King, E.O., Ward, M.K. & Raney, D.E., 1954. Two simple media for demonstration of pyocianin and fluorescin. Journal of Laboratory and Clinical Medicin 44: 301–307.PubMedGoogle Scholar
  9. Komada, H., 1975. Development of a selective medium for quantitative isolation ofFusarium oxysporum from natural soils. Review Plant Protection Research 8: 114–125.Google Scholar
  10. Lamers, J.G., Schippers, B. & Geels, F.P. 1989. Soil-borne diseases of wheat in the Netherlands and seed bacterization with pseudomonads againstGaeumannomyces graminis var.tritici In: M.L. Jorna and L.A. Slootmaker (Eds), Cereal breeding related to integrated cereal production. p. 134–139.Google Scholar
  11. Lindsay, W.L., 1979. Chemical equilibria in soils. John Wiley and Sons, New York.Google Scholar
  12. Meyer, J.M. & Abdallah, M.A. 1978. The fluorescent pigment ofPseudomonas fluorescens: biosynthesis, purification and physico chemical properties. Journal of General Microbiology 107: 319–328.Google Scholar
  13. Neilands, J.B., 1974. Microbial iron metabolism. Academic Press, New York and London, 597 pp.Google Scholar
  14. Neilands, J.B. 1981. Microbial iron compounds. Annual Review of Biochemistry 50: 715–731.CrossRefPubMedGoogle Scholar
  15. Neilands, J.B., 1984. Methodology of siderophores. Structure and Bounding 58: 1–24.Google Scholar
  16. Peer, R. van, 1988.Pseudomonas bacteriën bestrijden Fusarium. Vakblad voor de Bloemisterij 43: 43.Google Scholar
  17. Peer, R. van, Xu, T., Rattink, H. & Schippers, B., 1989. Biological control ofFusarium oxysporum in hydroponics. In: A.A. Steiner & J.J. Uttien (Eds), Soilless cultures, Proceedings 7th International Congress. ISOSC, Wageningen, the Netherlands. p. 375–384.Google Scholar
  18. Peer, R. van & Schippers, B., 1989. Plant growth responses to bacterization and rhizosphere microbial development in hydroponic culture. Canadian Journal of Microbiology 35: 456–463.Google Scholar
  19. Scher, F.M. & Baker, R., 1982. Effect ofPseudomonas putida and a synthetic iron chelator on induction of suppressiveness to Fusarium wilt pathogens. Phytopathology 72: 1567–1573.Google Scholar
  20. Scher, F.M. & Baker, R., 1984. Effect of iron chelates on population densities ofFusarium oxysporum and the biological control agentPseudomonas putida in soil. Canadian Journal of Microbiology 30: 1271–1275.Google Scholar
  21. Simeoni, L.A., Lindsay, W.L. & Baker, R., 1987. Critical iron levels associated with biological control of fusarium wilt. Phytopathology 77: 1057–1061.Google Scholar
  22. Sokal, R.R. & Rohlf, F.J., 1981. Biometry. Freeman Publiacations, San Francisco.Google Scholar
  23. Swinburne, T.R., 1986. Stimulation of disease development by siderophores and inhibition by chelated iron. In: T.R. Swinburne (Ed.), Iron, siderophores and plant diseases. Plenum, New York, p. 217–226.Google Scholar
  24. Voogt, W. de, 1986. Voedingsoplossing voor anjer. Vakblad voor de Bloemisterij 41: 29–30.Google Scholar
  25. Waring, W.S. & Werkman, C.H., 1942. Growth of bacteria in an iron-free medium. Archives of Biochemistry 1: 303–310.Google Scholar
  26. Weller, D.M., 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology 26: 379–407.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 1990

Authors and Affiliations

  • R. Van Peer
    • 1
  • A. J. Van Kuik
    • 1
  • H. Rattink
    • 2
  • B. Schippers
    • 1
  1. 1.Willie Commelin Scholten Phytopathological LaboratoryBaarnthe Netherlands
  2. 2.Research Institute for Crop ProtectionWageningen/Experimental Station for FloricultureAalsmeerthe Netherlands

Personalised recommendations