Transgenic Research

, Volume 3, Issue 2, pp 99–108 | Cite as

Expression of human lactoferrin in milk of transgenic mice

  • Gerard J. Platenburg
  • Erika P. A. Kootwijk
  • Patricia M. Kooiman
  • Shelley L. Woloshuk
  • Jan H. Nuijens
  • Paul J. A. Krimpenfort
  • Frank R. Pieper
  • Herman A. de Boer
  • Rein Strijker
Papers

Abstract

The expression of human lactoferrin (hLF) in the milk of transgenic mice is described. Regulatory sequences derived from the bovine αS1-casein gene were fused to the coding sequence of the hLF cDNA and several lines of transgenic mice were generated. Human LF RNA was detected exclusively in the mammary gland of lactating females and only after the onset of lactation. No aberrant RNA products could be detected using northern blotting and primer extension analysis. The hLF concentrations in the milk ranged from less than 0.1 to 36 μg ml−1. Human LF thus expressed did not differ from human milk derived LF, with respect to molecular mass and immunoreactivity with monoclonal and polyclonal antibodies.

Keywords

human lactoferrin αS1-casein transgenic mice tissue specificity mammary gland 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B.F., Baker, H.M., Noris, G.E., Rice, D.W. and Baker, E.N. (1989) structure of human lactoferrin: Crystallographic structure analysis and refinement at 2.8 a resolution.J. Mol. Biol. 209, 711–34.Google Scholar
  2. Anderson, B.F., Baker, H.M., Noris, G.E., Rumball, S.V. and Baker, E.N. (1990) Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins.Nature 344, 784–7.Google Scholar
  3. Auffray, C. and Rougeon, F. (1980) Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA.Eur. J. Biochem. 107, 303–14.Google Scholar
  4. Broxmeyer, H.E. (1986) Biomolecule-cell interactions and the regulation of myelopoiesis.Int. J. Cell Cloning 4, 378–405.Google Scholar
  5. Buhler, T.A., Bruyere, T., Went, D.F., Stranzinger, G. and Burki, K. (1990) Rabbit β-casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits.Bio/Technology 8, 140–3.Google Scholar
  6. Ebert, K.M., Selgrath, J.P., Ditullio, P., Denmam, J., Smith, T.E., Memon, M.A., Schindler, J.E., Monastersky, G.M., Vitale, J.A. and Gordon, K. (1991) Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression.Bio/Technology 9, 835–8.Google Scholar
  7. Ellison, R.T., III and Giehl, T.J. (1991) Killing of gram-negative bacteria by lactoferrin and lysozyme.J. Clin. Invest. 88, 1080–91.Google Scholar
  8. Ferretti, L., Leone, P. and Sgaramella, V. (1990) Long range restriction analysis of the bovine casein genes.Nucl. Acids Res. 18, 6829–33.Google Scholar
  9. Fransson, G.B. and Lonnerdal, B. (1980) Iron in human milk.J. Pediatr. 96, 380–4.Google Scholar
  10. Goodman, R.E. and Shanbacher, F.L. (1991) Bovine lactoferrin mRNA: sequence, analysis, and expression in the mammary gland.Biochem. Biophys. Res. Comm. 180, 75–84.Google Scholar
  11. Gordon, K., Lee, E., Vitale, J.A., Smith, A.E., Westphal, H. and Hennighausen, L. (1987) Production of human tissue plasminogen activator in transgenic mouse milk.Bio/Technology 5, 1183–7.Google Scholar
  12. Gupta, P., Rosen, J.M., D'Eustachio, P. and Ruddle, F.H. (1982) Localization of the casein gene family to a single mouse chromosome.J. Cell. Biol. 93, 199–204.Google Scholar
  13. Hennighausen, L.G. and Sippel, A.E. (1982) Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland.Eur. J. Biochem. 125, 131–41.Google Scholar
  14. Hennighausen, L. (1990) The mammary gland as a bioreactor: production of foreign proteins in milk.Prot. Expr. Pur. 1, 3–5.Google Scholar
  15. Hennighausen, L., Westphal, C., Sankaran, L. and Pittius, C.W. (1991) Regulation of expression of genes for milk proteins. In First, N. and Haseltine, F.P. (eds)Transgenic animals pp. 65–74, Butterworth-Heinemann.Google Scholar
  16. Hogan, B.L.M., Costantini, F. and Lacy, E. (1986)Manipulation of the Mouse Embryo: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  17. Kawakami, H. and Lonnerdal, B. (1991) Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes.Am. J. Physiol. 261, G841–6.Google Scholar
  18. Kijlstra, A. and Jeurissen, S.H.M. (1982) Modulation of classical C3 convertase of complement by tear lactoferrin.Immunology 47, 263–70.Google Scholar
  19. Koczan, D., Hobom, G. and Seyfert, H.M. (1991) Genomic organization of the bovine αS1-casein gene.Nucl. Acids Res. 19, 5591–6.Google Scholar
  20. Konings, R.N.H., Luiten, R.G.M. and Peeters, B.P.H. (1986) Mike, a chimeric filamentous phage designed for the separate production of either DNA strand of pKUN vector plasmids by F+ cells.Gene 46, 269–76.Google Scholar
  21. Krimpenfort, P., Rademakers, A., Eyestone, W., Van der Schans, A., Van den Broek, S., Kooiman, P., Kootwijk, H., Platenburg, G., Pieper, F., Strijker, R. and de Boer, H. (1991) Generation of transgenic dairy cattle using ‘in vitro’ embryo production.Bio/Technology 9, 844–7.Google Scholar
  22. Kuizinga, A., van Haeringen, N.J. and Kijlstra, A. (1987) Inhibition of hydroxyl radical formation by human tears.Invest. Ophthalmol. Vis. Sci. 28, 305–13.Google Scholar
  23. Lee, Y.L., Mann, R.L., Couch, C.H., Stewart, A.F., MacKinlay, A.G. and Rosen, J.M. (1986) Evolution of the casein multigene family: conserved sequences in the 5′ flanking and exon regions.Nucl. Acids Res. 14, 1883–902.Google Scholar
  24. Masson, P.L. and Heremans, J.F. (1971) Lactoferrin in milk from different species.Comp. Biochem. Physiol. 39B, 119–29.Google Scholar
  25. Meade, H., Gates, L., Lacy, E. and Lonberg, N. (1990) Bovine αS1-casein gene sequences direct high level expression ofGoogle Scholar
  26. Nuijens, J.H., Eerenberg-Belmer, A., Huijbregts, C., Schreuder, W.O., Felt-Bersma, R., Abbink, J., Thijs, L.G. and Hack, C. (1989) Proteolytic inactivation of plasma Cl-inhibitor in sepsis.J. Clin. Invest. 84, 443–50.Google Scholar
  27. Nuijens, J.H., Abbink, J.J., Wachtfogel, Y.T., Colman, R.W., Eerenberg, A.J.M., Dors, D., Kamp, A.J.M., Strack van Schijndel, R.J.M., Thijs, L.G. and Hack, C.E. (1992) Plasma elastase α1-antitrypsin and lactoferrin in sepsis: evidence for neutrophils as mediators in fatal sepsis.J. Lab. Clin. Med. 119, 159–68.Google Scholar
  28. Persuy, M.A., Stinnakre, M.G., Printz, C., Mahe, M.F. and Mercier, J.C. (1992) High level expression of the caprine β-casein gene in transgenic mice.Eur. J. Biochem. 205, 887–93.Google Scholar
  29. Powell, M.J. and Ogden, J.E. (1990) Nucleotide sequence of human lactoferrin cDNA.Nucl. Acids Res. 18, 4013.Google Scholar
  30. Rado, T.A., Wei, X. and Benz, E.J. (1987) Isolation of lactoferrin cDNA from a human myeloid library and expression of mRNA during normal and leukemic myelopoiesis.Blood 70, 989–93.Google Scholar
  31. Rey, M.W., Woloshuk, S.L., de Boer, H.A. and Pieper, F.R. (1990) Complete nucleotide sequence of human mammary gland lactoferrin.Nucl. Acids Res. 18, 5288.Google Scholar
  32. Saarinen, U.M. and Siimes, M.A. (1979) Iron absorption from breast milk, cow's milk, and iron-supplemented formula: an opportunistic use of changes in total body iron determined by hemoglobin, ferritin, and body weight in 132 infants.Pediat. Res. 13, 143–7.Google Scholar
  33. Sambrook, J., Fritsch, E. and Maniatis, T. (1989)Molecular Cloning: a Laboratory Manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  34. Stewart, A.F., Willis, I.M. and MacKinlay, A.G. (1984) Nucleotide sequences of bovine αS1- and k-casein cDNAs.Nucl. Acids Res. 12, 3895–907.Google Scholar
  35. Stowell, K.M., Rado, T.A., Funk, W.D. and Tweedie, J.W. (1991) Expression of cloned human lactoferrin in baby hamster kidney cells.Biochem. J. 276, 349–55.Google Scholar
  36. Stuart, J., Norrell, S. and Harrington, J.P. (1984) Kinetic effect of human lactoferrin on the growth ofEscherichia coli 0111:Int. J Biochem. 16, 1043–8.Google Scholar
  37. Teng, C.T., Pentecost, B.T., Chen, Y.H., Newblod, R.R., Eddy, E.M. and McLachlan, J.A. (1989) Lactotransferrin gene expression in the mouse uterus and mammary gland.Endocrinol. 124, 992–9.Google Scholar
  38. Threadgill, D.W. and Womack, J.E. (1990) Genomic analysis of the major bovine milk protein genes:Nucl. Acids Res. 18, 6935–42.Google Scholar
  39. Wall, R.J., Pursel, V.G., Shamay, A., McKnight, R.A., Pittius, C.W. and Hennighausen, L. (1991) High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine.Proc. Natl Acad. Sci. USA 88, 1696–700.Google Scholar
  40. Ward, P.P., Lo, J.Y., Duke, M., May, G.S., Headon, D.R. and Conneely, O.M. (1992) Production of biologically active human lactoferrin inAspergillus oryzae.Bio/Technology 10, 784–9.Google Scholar
  41. Wright, G., Carver, A., Cottom, D., Reeves, D., Scott, A., Simons, P., Wilmut, I., Garner, I. and Colman, A. (1991) High level expression of active human α-1-antitrypsin in the milk of transgenic sheep.Bio/Technology 9, 830–4.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Gerard J. Platenburg
    • 1
    • 2
  • Erika P. A. Kootwijk
    • 1
    • 2
  • Patricia M. Kooiman
    • 1
    • 2
  • Shelley L. Woloshuk
    • 1
    • 2
  • Jan H. Nuijens
    • 1
    • 2
  • Paul J. A. Krimpenfort
    • 1
    • 2
  • Frank R. Pieper
    • 1
    • 2
  • Herman A. de Boer
    • 1
    • 2
  • Rein Strijker
    • 1
    • 2
  1. 1.GenePharming Europe B.V. Niels Bohrweg 11-13LeidenThe Netherlands
  2. 2.Dept. of BiochemistryLeiden UniversityLeidenThe Netherlands

Personalised recommendations